Challenges Facing Future Micro-Air-Vehicle Development

Nomenclature Ar = rotor disk area CD = sectional drag coefficient CD0 = zero-lift drag coefficient Clα = lift-curve slope CP = power coefficient CPi = induced power coefficient CP0 = profile power coefficient CT = thrust coefficient c = chord length D = drag force D.L . = disk loading L = lift force m = mass P.L . = power loading SF = separated flow T = rotor thrust V = local wind velocity perceived by flap W = weight W f = final weight Wo = gross takeoff weight α = blade section angle of attack η = efficiency μ = dynamic viscosity ρ = air density σ = rotor solidity = flapping amplitude (peak to peak)

[1]  T. Weis-Fogh Quick estimates of flight fitness in hovering animals , 1973 .

[2]  M. J. Lishthill Introduction to the Scaling of Aerial Locomotion , 1977 .

[3]  J. Rayner A New Approach to Animal Flight Mechanics , 1979 .

[4]  T. Maxworthy Experiments on the Weis-Fogh mechanism of lift generation by insects in hovering flight. Part 1. Dynamics of the ‘fling’ , 1979, Journal of Fluid Mechanics.

[5]  M. L. Henderson,et al.  Low-speed single-element airfoil synthesis , 1979 .

[6]  A. Bruining,et al.  Aerodynamic characteristics of a curved plate airfoil section at Reynolds numbers 60000 and 100000 and angles of attack from -10 to +90 degrees , 1979 .

[7]  G. Spedding,et al.  The generation of circulation and lift in a rigid two-dimensional fling , 1986, Journal of Fluid Mechanics.

[8]  T. Mueller,et al.  Laminar separation bubble characteristics on an airfoil at low Reynolds numbers , 1987 .

[9]  Jeremy M. V. Rayner,et al.  Form and Function in Avian Flight , 1988 .

[10]  Parviz Moin,et al.  The structure of two-dimensional separation , 1990, Journal of Fluid Mechanics.

[11]  U. Norberg Vertebrate Flight: Mechanics, Physiology, Morphology, Ecology and Evolution , 1990 .

[12]  R. Wootton THE MECHANICAL DESIGN OF INSECT WINGS , 1990 .

[13]  C. Ellington Aerodynamics and the origin of insect flight , 1991 .

[14]  J. Brackenbury Insects in Flight , 1992 .

[15]  Richard Hundley,et al.  Future Technology-Driven Revolutions in Military Operations. Results of a Workshop , 1994 .

[16]  M. Selig Summary of low speed airfoil data , 1995 .

[17]  M. Dickinson UNSTEADY MECHANISMS OF FORCE GENERATION IN AQUATIC AND AERIAL LOCOMOTION , 1996 .

[18]  Laura L. Pauley,et al.  Low-Reynolds-number separation on an airfoil , 1996 .

[19]  Pennycuick Wingbeat frequency of birds in steady cruising flight: new data and improved predictions , 1996, The Journal of experimental biology.

[20]  Shigeru Sunada,et al.  Airfoil Section Characteristics at a Low Reynolds Number , 1997 .

[21]  S. D. Senturia,et al.  Macro Power from Micro Machinery , 1997, Science.

[22]  Ellington,et al.  A computational fluid dynamic study of hawkmoth hovering , 1998, The Journal of experimental biology.

[23]  M. Dickinson,et al.  The Control of Mechanical Power in Insect Flight , 1998 .

[24]  Wei Shyy,et al.  Flapping and flexible wings for biological and micro air vehicles , 1999 .

[25]  R. Dudley The Biomechanics of Insect Flight: Form, Function, Evolution , 1999 .

[26]  C. Ellington The novel aerodynamics of insect flight: applications to micro-air vehicles. , 1999, The Journal of experimental biology.

[27]  M. Dickinson,et al.  Wing rotation and the aerodynamic basis of insect flight. , 1999, Science.

[28]  T.N. Pornsin-Sirirak,et al.  MEMS wing technology for a battery-powered ornithopter , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[29]  Ronald S. Fearing,et al.  Wing transmission for a micromechanical flying insect , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[30]  Thomas J. Mueller,et al.  Low Reynolds Number Aerodynamics of Low-Aspect-Ratio, Thin/Flat/Cambered-Plate Wings , 2000 .

[31]  Munro,et al.  Proposal for the measurement of bell-type correlations from continuous variables , 2000, Physical review letters.

[32]  Dorian Liepmann,et al.  Design and Experimental Results of Small-Scale Rotary Engines , 2001, Micro-Electro-Mechanical Systems (MEMS).

[33]  Mohamed Gad-el-Hak,et al.  Flow Control: The Future , 2001 .

[34]  X. Zhong,et al.  Numerical Study of Unsteady Low-Reynolds-Number Separation Bubbles Using a New High Order Scheme , 2001 .

[35]  T.N. Pornsin-Sirirak,et al.  Flexible parylene actuator for micro adaptive flow control , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[36]  Matthew T. Keennon,et al.  Development of the Black Widow Micro Air Vehicle , 2001 .

[37]  M. Dickinson,et al.  The control of flight force by a flapping wing: lift and drag production. , 2001, The Journal of experimental biology.

[38]  Wei Shyy,et al.  Flexible-wing-based Micro Air Vehicles , 2002 .

[39]  M. Goldfarb,et al.  The Development of Elastodynamic Components for Piezoelectrically Actuated Flapping Micro-Air Vehicles , 2002 .

[40]  C. Cadou,et al.  Performance Scaling and Measurement for Hydrocarbon-Fueled Engines With Mass Less than 1kg , 2002 .

[41]  Shigeru Sunada,et al.  Comparison of wing characteristics at an ultralow Reynolds number , 2002 .

[42]  Terrence A. Weisshaar,et al.  Evaluating the Impact of Morphing Technologies on Aircraft Performance , 2002 .

[43]  Jeffrey L. Johnson,et al.  New Concepts and Perspectives on Micro-Rotorcraft and Small Autonomous Rotary-Wing Vehicles , 2002 .

[44]  R. Zbikowski On aerodynamic modelling of an insect–like flapping wing in hover for micro air vehicles , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[45]  Robert J. Wood,et al.  Dynamically tuned design of the MFI thorax , 2002, Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No.02CH37292).

[46]  Anna-Maria Rivas McGowan,et al.  Recent results from NASA's morphing project , 2002, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[47]  Stephen J. Morris,et al.  DESIGN AND FLIGHT TEST RESULTS FOR MICRO-SIZED FIXED-WING AND VTOL AIRCRAFT , 2003 .

[48]  Matthew,et al.  Design & Development of a Thrust Augmented Entomopter: An Advanced Flapping Wing Micro Hovering Air Vehicle , 2003 .

[49]  Darryll J. Pines,et al.  Design, Analysis and Hover Performance of a Rotary Wing Micro Air Vehicle , 2003 .

[50]  Norman Chigier,et al.  A Review of Micro Propulsion Technology , 2003 .

[51]  Rafal Zbikowski,et al.  Progress in Aerodynamic Studies of Micro Air Vehicles Based on Insect-Like Flapping Wings , 2003 .

[52]  Shyam Menon,et al.  Performance Measurement and Scaling in Small Internal Combustion Engines , 2003 .

[53]  Andrew T. Conn,et al.  The Parallel Crank-Rocker Flapping Mechanism: an Insect-Inspired Design for Micro Air Vehicles , 2007, Int. J. Humanoid Robotics.