A euryarchaeal lysyl-tRNA synthetase: resemblance to class I synthetases.
暂无分享,去创建一个
C R Woese | C. Woese | D. Söll | W. Gardner | M. Ibba | A. Curnow | S. Morgan | D. Pridmore | U. Vothknecht | W. Lin | M Ibba | D Söll | S Morgan | A W Curnow | D R Pridmore | U C Vothknecht | W Gardner | W Lin | W. Lin | Alan W. Curnow | Dieter Söll | Michael Ibba | Ute C. Vothknecht | Susan Morgan | David R. Pridmore | Warren Gardner | Winston Lin | Carl R. Woese
[1] A. Nicolas,et al. An atypical topoisomerase II from archaea with implications for meiotic recombination , 1997, Nature.
[2] D. Söll,et al. Aminoacyl-tRNA synthesis: divergent routes to a common goal. , 1997, Trends in biochemical sciences.
[3] M. Mirande,et al. Functional replacement of hamster lysyl-tRNA synthetase by the yeast enzyme requires cognate amino acid sequences for proper tRNA recognition. , 1996, Biochemistry.
[4] S. Cusack,et al. The crystal structures of T. thermophilus lysyl‐tRNA synthetase complexed with E. coli tRNA(Lys) and a T. thermophilus tRNA(Lys) transcript: anticodon recognition and conformational changes upon binding of a lysyl‐adenylate analogue. , 1996, The EMBO journal.
[5] C. Sensen,et al. Organizational characteristics and information content of an archaeal genome: 156kb of sequence from Sulfolobus solfataricus P2 , 1996, Molecular microbiology.
[6] E. Koonin,et al. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. , 1996, Proceedings of the National Academy of Sciences of the United States of America.
[7] Dieter Söll,et al. tRNA-dependent asparagine formation , 1996, Nature.
[8] Histones and chromatin structure in hyperthermophilic Archaea. , 1996, FEMS microbiology reviews.
[9] D. Söll,et al. Transfer RNA‐dependent cognate amino acid recognition by an aminoacyl‐tRNA synthetase. , 1996, The EMBO journal.
[10] S. Cusack. Eleven down and nine to go , 1995, Nature Structural Biology.
[11] D. H. Gauss,et al. Lysyl-tRNA synthetase. , 1995, Biological chemistry Hoppe-Seyler.
[12] W. Doolittle,et al. Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications. , 1995, Proceedings of the National Academy of Sciences of the United States of America.
[13] Andrew D. Miller,et al. The crystal structure of the lysyl-tRNA synthetase (LysU) from Escherichia coli. , 1995, Structure.
[14] J. Thompson,et al. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.
[15] P. Plateau,et al. Properties of the lysyl-tRNA synthetase gene and product from the extreme thermophile Thermus thermophilus , 1994, Journal of bacteriology.
[16] H. Himeno,et al. In vitro study of E.coli tRNA(Arg) and tRNA(Lys) identity elements. , 1992, Nucleic acids research.
[17] Olivier Poch,et al. Partition of tRNA synthetases into two classes based on mutually exclusive sets of sequence motifs , 1990, Nature.
[18] E. V. Arx,et al. Eine Multidimensionale technik zur chromatographischen identifizierung von aminosäuren , 1963 .