Studies in the history of probability and statistics XLIX On the Matérn correlation family
暂无分享,去创建一个
[1] Hermann Hankel. Bestimmte Integrale mit Cylinderfunctionen , 1875 .
[2] N. Sonine,et al. Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries , 1880 .
[3] S. Bochner. Monotone Funktionen, Stieltjessche Integrale und harmonische Analyse , 1933 .
[4] I. J. Schoenberg. Metric spaces and completely monotone functions , 1938 .
[5] Metoder att uppskatta noggrannheten vid linje- och provytetaxering , 1947 .
[6] T. Kármán. Progress in the Statistical Theory of Turbulence , 1948 .
[7] P. Whittle. ON STATIONARY PROCESSES IN THE PLANE , 1954 .
[8] R. Lord,et al. THE USE OF THE HANKEL TRANSFORM IN STATISTICS: I. GENERAL THEORY AND EXAMPLES , 1954 .
[9] B. Matérn. Spatial variation : Stochastic models and their application to some problems in forest surveys and other sampling investigations , 1960 .
[10] R. A. Silverman,et al. Wave Propagation in a Turbulent Medium , 1961 .
[11] I. P. Shkarofsky,et al. Generalized turbulence space-correlation and wave-number spectrum-function pairs , 1968 .
[12] C. E. Buell. Correlation Functions for Wind and Geopotential on Isobaric Surfaces , 1972 .
[13] I. Rodríguez‐Iturbe,et al. On the synthesis of random field sampling from the spectrum: An application to the generation of hydrologic spatial processes , 1974 .
[14] S. Meier. Planar geodetic covariance functions , 1981 .
[15] R. Adler,et al. The Geometry of Random Fields , 1982 .
[16] A. Yaglom. Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .
[17] Thomas H. Jordan,et al. Stochastic Modeling of Seafloor Morphology: Inversion of Sea Beam Data for Second-Order Statistics , 1988 .
[18] John T. Kent,et al. Continuity Properties for Random Fields , 1989 .
[19] M. Stein,et al. A Bayesian analysis of kriging , 1993 .
[20] J. R. Wallis,et al. An Approach to Statistical Spatial-Temporal Modeling of Meteorological Fields , 1994 .
[21] John A. Goff,et al. Modal fields: A new method for characterization of random seismic velocity heterogeneity , 1994 .
[22] C. R. Dietrich,et al. A Simple and Efficient Space Domain Implementation of the Turning Bands Method , 1995 .
[23] Tilmann Gneiting,et al. Closed Form Solutions of the Two-Dimensional Turning Bands Equation , 1998 .
[24] S. Cohn,et al. Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .
[25] J. Chilès,et al. Geostatistics: Modeling Spatial Uncertainty , 1999 .
[26] Roger Woodard,et al. Interpolation of Spatial Data: Some Theory for Kriging , 1999, Technometrics.
[27] Robert Piessens,et al. The Hankel Transform , 2000 .
[28] M. Fuentes. Spectral methods for nonstationary spatial processes , 2002 .
[29] Matthias W. Seeger,et al. Gaussian Processes For Machine Learning , 2004, Int. J. Neural Syst..
[30] Samuel Kotz,et al. Multivariate T-Distributions and Their Applications , 2004 .
[31] B. Minasny,et al. The Matérn function as a general model for soil variograms , 2005 .