Impact of cadmium and phosphate ions on the hematite nanorings formation

[1]  S. Krehula,et al.  The high impact of a milling atmosphere on steel contamination. , 2013, Chemical communications.

[2]  Y. Li,et al.  Synthesis, optical and magnetic properties of α-Fe2O3 nanoparticles with various shapes , 2013 .

[3]  Qian Zhang,et al.  Cooperative effect of pH value and anions on single-crystalline hexagonal and circular α-Fe2O3 nanorings , 2012 .

[4]  S. Musić,et al.  Hydrothermal synthesis of α-Fe2O3 nanorings with the help of divalent metal cations, Mn2+, Cu2+, Zn2+ and Ni2+ , 2011 .

[5]  Xuemei Zhou,et al.  Visible Light Induced Photocatalytic Degradation of Rhodamine B on One-Dimensional Iron Oxide Particles† , 2010 .

[6]  P. D. Brown,et al.  A valve-assisted snapshot approach to understand the hydrothermal synthesis of α-Fe2O3 nanorods , 2010 .

[7]  P. D. Brown,et al.  Process Map for the Hydrothermal Synthesis of α-Fe2O3 Nanorods , 2009 .

[8]  M. Olivo,et al.  Single-crystalline MFe(2)O(4) nanotubes/nanorings synthesized by thermal transformation process for biological applications. , 2009, ACS nano.

[9]  S. Musić,et al.  Study of the reduction and reoxidation of substoichiometric magnetite , 2009 .

[10]  M. Takano,et al.  Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. , 2008, Journal of the American Chemical Society.

[11]  M. Zic,et al.  Effect of phosphate on the morphology and size of α-Fe2O3 particles crystallized from dense β-FeOOH suspensions , 2008 .

[12]  Chunhua Yan,et al.  Correlation between magnetic spin structure and the three-dimensional geometry in chemically synthesized nanoscale magnetite rings , 2008 .

[13]  Xianluo Hu,et al.  α‐Fe2O3 Nanorings Prepared by a Microwave‐Assisted Hydrothermal Process and Their Sensing Properties , 2007 .

[14]  D. Sparks,et al.  Phosphate adsorption onto hematite: an in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation. , 2007, Journal of colloid and interface science.

[15]  Y. Chu,et al.  Synthesis and characterization of ring-like α-Fe2O3 , 2007 .

[16]  C. H. Back,et al.  Magnetic vortex core reversal by excitation with short bursts of an alternating field , 2006, Nature.

[17]  Chunhua Yan,et al.  Single-crystalline iron oxide nanotubes. , 2005, Angewandte Chemie.

[18]  G. Burns,et al.  Infrared- and Raman-active phonons of magnetite, maghemite, and hematite: a computer simulation and spectroscopic study. , 2005, The journal of physical chemistry. B.

[19]  M. Lazzeri,et al.  First-principles calculation of the infrared spectrum of hematite , 2002 .

[20]  A. Muramatsu,et al.  FTIR analysis of well-defined α-Fe2O3 particles , 1998 .

[21]  S. Sjöberg,et al.  Structure and Bonding of Orthophosphate Ions at the Iron Oxide-Aqueous Interface. , 1996, Journal of colloid and interface science.

[22]  R. W. Cheary,et al.  A fundamental parameters approach to X-ray line-profile fitting , 1992 .

[23]  F. D. Bergevin,et al.  Structure locale de δ-FeOOH , 1983 .

[24]  S. Musić,et al.  Mössbauer spectroscopic study of the formation of Fe(III) oxyhydroxides and oxides by hydrolysis of aqueous Fe(III) salt solutions , 1982 .

[25]  C. Serna,et al.  Infrared surface modes in corundum-type microcrystalline oxides , 1982 .

[26]  C. Serna,et al.  IR spectra of powder hematite: effects of particle size and shape , 1981, Clay Minerals.

[27]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .