Polymodal Motion Processing in Posterior Parietal and Premotor Cortex A Human fMRI Study Strongly Implies Equivalencies between Humans and Monkeys

[1]  Georg Kerkhoff,et al.  Spatial hemineglect in humans , 2001, Progress in Neurobiology.

[2]  E. DeYoe,et al.  A comparison of visual and auditory motion processing in human cerebral cortex. , 2000, Cerebral cortex.

[3]  H. Sakata,et al.  Parietal neurons represent surface orientation from the gradient of binocular disparity. , 2000, Journal of neurophysiology.

[4]  J. Downar,et al.  A multimodal cortical network for the detection of changes in the sensory environment , 2000, Nature Neuroscience.

[5]  D. Gitelman,et al.  Covert Visual Spatial Orienting and Saccades: Overlapping Neural Systems , 2000, NeuroImage.

[6]  L. Krubitzer,et al.  Somatotopic organization of cortical fields in the lateral sulcus of Homo sapiens: Evidence for SII and PV , 2000, The Journal of comparative neurology.

[7]  M Dieterich,et al.  Brain activation studies on visual-vestibular and ocular motor interaction. , 2000, Current opinion in neurology.

[8]  F Bremmer,et al.  Stages of self-motion processing in primate posterior parietal cortex. , 2000, International review of neurobiology.

[9]  J. Mazziotta,et al.  Cortical mechanisms of human imitation. , 1999, Science.

[10]  Guy Marchal,et al.  Human Cortical Regions Involved in Extracting Depth from Motion , 1999, Neuron.

[11]  A. Murata,et al.  Largely segregated parietofrontal connections linking rostral intraparietal cortex (areas AIP and VIP) and the ventral premotor cortex (areas F5 and F4) , 1999, Experimental Brain Research.

[12]  Hans-Jochen Heinze,et al.  A movement-sensitive area in auditory cortex , 1999, Nature.

[13]  G. Orban,et al.  Motion-responsive regions of the human brain , 1999, Experimental Brain Research.

[14]  M. Mesulam,et al.  Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[15]  Ravi S. Menon,et al.  fMRI evidence for an inverted face representation in human somatosensory cortex. , 1999, Neuroreport.

[16]  Ralph Myers,et al.  Assessment of Spatial Normalization of PET Ligand Images Using Ligand-Specific Templates , 1999, NeuroImage.

[17]  David C. Alsop,et al.  Mapping of secondary somatosensory cortex activation induced by vibrational stimulation: an fMRI study , 1999, Brain Research.

[18]  C. Gross,et al.  A neuronal representation of the location of nearby sounds , 1999, Nature.

[19]  M. Corbetta,et al.  A Common Network of Functional Areas for Attention and Eye Movements , 1998, Neuron.

[20]  J. Marshall,et al.  Hemispheric asymmetries in global⧹local processing are modulated by perceptual salience , 1998, Neuropsychologia.

[21]  Giuseppe di Pellegrino,et al.  Neuropsychological Evidence of an Integrated Visuotactile Representation of Peripersonal Space in Humans , 1998, Journal of Cognitive Neuroscience.

[22]  Richard S. J. Frackowiak,et al.  Right parietal cortex is involved in the perception of sound movement in humans , 1998, Nature Neuroscience.

[23]  J. Mattingley,et al.  Parietal neglect and visual awareness , 1998, Nature Neuroscience.

[24]  C. Gross,et al.  Spatial maps for the control of movement , 1998, Current Opinion in Neurobiology.

[25]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[26]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: congruent visual and somatic response properties. , 1998, Journal of neurophysiology.

[27]  C D Frith,et al.  Space-based and object-based visual attention: shared and specific neural domains. , 1997, Brain : a journal of neurology.

[28]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[29]  A. Dale,et al.  Functional Analysis of V3A and Related Areas in Human Visual Cortex , 1997, The Journal of Neuroscience.

[30]  G. Rizzolatti,et al.  Parietal cortex: from sight to action , 1997, Current Opinion in Neurobiology.

[31]  E. DeYoe,et al.  Graded effects of spatial and featural attention on human area MT and associated motion processing areas. , 1997, Journal of neurophysiology.

[32]  Karl J. Friston,et al.  Cognitive Conjunction: A New Approach to Brain Activation Experiments , 1997, NeuroImage.

[33]  C. Gross,et al.  Visuospatial properties of ventral premotor cortex. , 1997, Journal of neurophysiology.

[34]  Richard S. J. Frackowiak,et al.  Multiple nonprimary motor areas in the human cortex. , 1997, Journal of neurophysiology.

[35]  K. Hoffmann,et al.  Eye position effects in monkey cortex. II. Pursuit- and fixation-related activity in posterior parietal areas LIP and 7A. , 1997, Journal of neurophysiology.

[36]  K. Hoffmann,et al.  Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. , 1997, Journal of neurophysiology.

[37]  Frank Bremmer,et al.  The Representation of Movement in Near Extra-Personal Space in the Macaque Ventral Intraparietal Area (VIP) , 1997 .

[38]  Peter Thier,et al.  Parietal Lobe Contributions to Orientation in 3D Space , 1997 .

[39]  R. Andersen,et al.  Multimodal representation of space in the posterior parietal cortex and its use in planning movements. , 1997, Annual review of neuroscience.

[40]  C. Colby,et al.  Spatial representations for action in parietal cortex. , 1996, Brain research. Cognitive brain research.

[41]  A. Rees,et al.  Evidence for a sound movement area in the human cerebral cortex , 1996, Nature.

[42]  K Cheng,et al.  Human cortical regions activated by wide-field visual motion: an H2(15)O PET study. , 1995, Journal of neurophysiology.

[43]  M. Arbib,et al.  Grasping objects: the cortical mechanisms of visuomotor transformation , 1995, Trends in Neurosciences.

[44]  R. Andersen,et al.  Functional analysis of human MT and related visual cortical areas using magnetic resonance imaging , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[45]  G. Orban,et al.  A motion area in human visual cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[46]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[47]  R. S. J. Frackowiak,et al.  Human cortical areas selectively activated by apparent sound movement , 1994, Current Biology.

[48]  G. Orban,et al.  Many areas in the human brain respond to visual motion. , 1994, Journal of neurophysiology.

[49]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .

[50]  M. Goldberg,et al.  Ventral intraparietal area of the macaque: anatomic location and visual response properties. , 1993, Journal of neurophysiology.

[51]  Richard S. J. Frackowiak,et al.  Area V5 of the human brain: evidence from a combined study using positron emission tomography and magnetic resonance imaging. , 1993, Cerebral cortex.

[52]  M. Corbetta,et al.  Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[53]  Karl J. Friston,et al.  A direct demonstration of functional specialization in human visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[55]  John H. R. Maunsell,et al.  The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey , 1983, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[56]  R. Desimone,et al.  Visual properties of neurons in a polysensory area in superior temporal sulcus of the macaque. , 1981, Journal of neurophysiology.

[57]  C. Robinson,et al.  Organization of somatosensory receptive fields in cortical areas 7b, retroinsula, postauditory and granular insula of M. fascicularis , 1980, The Journal of comparative neurology.

[58]  H. Burton,et al.  Somatic submodality distribution within the second somatosensory (SII), 7b, retroinsular, postauditory, and granular insular cortical areas of M. fascicularis , 1980, The Journal of comparative neurology.

[59]  R. Desimone,et al.  Visual areas in the temporal cortex of the macaque , 1979, Brain Research.