Flies dynamically anti-track, rather than ballistically escape, aversive odor during flight

SUMMARY Tracking distant odor sources is crucial to foraging, courtship and reproductive success for many animals including fish, flies and birds. Upon encountering a chemical plume in flight, Drosophila melanogaster integrates the spatial intensity gradient and temporal fluctuations over the two antennae, while simultaneously reducing the amplitude and frequency of rapid steering maneuvers, stabilizing the flight vector. There are infinite escape vectors away from a noxious source, in contrast to a single best tracking vector towards an attractive source. Attractive and aversive odors are segregated into parallel neuronal pathways in flies; therefore, the behavioral algorithms for avoidance may be categorically different from tracking. Do flies plot random ballistic or otherwise variable escape vectors? Or do they instead make use of temporally dynamic mechanisms for continuously and directly avoiding noxious odors in a manner similar to tracking appetitive ones? We examine this question using a magnetic tether flight simulator that permits free yaw movements, such that flies can actively orient within spatially defined odor plumes. We show that in-flight aversive flight behavior shares all of the key features of attraction such that flies continuously ‘anti-track’ the noxious source.

[1]  Dawnis M Chow,et al.  An Olfactory Circuit Increases the Fidelity of Visual Behavior , 2011, The Journal of Neuroscience.

[2]  Brian J. Duistermars,et al.  Odor identity influences tracking of temporally patterned plumes in Drosophila , 2011, BMC Neuroscience.

[3]  K. Durand,et al.  The Nose Tells it to the Eyes: Crossmodal Associations between Olfaction and Vision , 2010, Perception.

[4]  Sheng He,et al.  Olfaction Modulates Visual Perception in Binocular Rivalry , 2010, Current Biology.

[5]  H. Seo,et al.  Odors enhance visual attention to congruent objects , 2010, Appetite.

[6]  Mark A Frye,et al.  Multisensory integration for odor tracking by flying Drosophila , 2010, Communicative & integrative biology.

[7]  J. Bacon,et al.  Escaping away from and towards a threat , 2009, Communicative & integrative biology.

[8]  Dawnis M. Chow,et al.  Flies Require Bilateral Sensory Input to Track Odor Gradients in Flight , 2009, Current Biology.

[9]  Jing W. Wang,et al.  Select Drosophila glomeruli mediate innate olfactory attraction and aversion , 2009, Nature.

[10]  Brian J. Duistermars,et al.  Visually Mediated Odor Tracking During Flight in Drosophila , 2009, Journal of visualized experiments : JoVE.

[11]  Dawnis M. Chow,et al.  The neuro-ecology of resource localization in Drosophila: Behavioral components of perception and search , 2009, Fly.

[12]  J. Bacon,et al.  Cockroaches Keep Predators Guessing by Using Preferred Escape Trajectories , 2008, Current Biology.

[13]  Mark A. Frye,et al.  A Magnetic Tether System to Investigate Visual and Olfactory Mediated Flight Control in Drosophila , 2008, Journal of visualized experiments : JoVE.

[14]  M. Dickinson,et al.  Visually Mediated Motor Planning in the Escape Response of Drosophila , 2008, Current Biology.

[15]  L. Vosshall,et al.  The Survival Advantage of Olfaction in a Competitive Environment , 2008, Current Biology.

[16]  Dawnis M Chow,et al.  Context-dependent olfactory enhancement of optomotor flight control in Drosophila , 2008, Journal of Experimental Biology.

[17]  Brian J. Duistermars,et al.  Flies see second-order motion , 2008, Current Biology.

[18]  Michael H. Dickinson,et al.  A Simple Vision-Based Algorithm for Decision Making in Flying Drosophila , 2008, Current Biology.

[19]  Mark A. Frye,et al.  Crossmodal Visual Input for Odor Tracking during Fly Flight , 2008, Current Biology.

[20]  Michael H. Dickinson,et al.  A modular display system for insect behavioral neuroscience , 2008, Journal of Neuroscience Methods.

[21]  R T Cardé,et al.  Odour plumes and odour-mediated flight in insects. , 2007, Ciba Foundation symposium.

[22]  Michael H Dickinson,et al.  Visual stimulation of saccades in magnetically tethered Drosophila , 2006, Journal of Experimental Biology.

[23]  M. Dickinson,et al.  Free-flight responses of Drosophila melanogaster to attractive odors , 2006, Journal of Experimental Biology.

[24]  John R. Carlson,et al.  The Molecular Basis of Odor Coding in the Drosophila Larva , 2005, Neuron.

[25]  Michael H Dickinson,et al.  Motor output reflects the linear superposition of visual and olfactory inputs in Drosophila , 2004, Journal of Experimental Biology.

[26]  R. Dolan,et al.  The Nose Smells What the Eye Sees Crossmodal Visual Facilitation of Human Olfactory Perception , 2003, Neuron.

[27]  M. Heisenberg Mushroom body memoir: from maps to models , 2003, Nature Reviews Neuroscience.

[28]  Michael H Dickinson,et al.  Odor localization requires visual feedback during free flight in Drosophila melanogaster , 2003, Journal of Experimental Biology.

[29]  Michael H Dickinson,et al.  The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. , 2002, The Journal of experimental biology.

[30]  Á. Acebes,et al.  Increasing the Number of Synapses Modifies Olfactory Perception in Drosophila , 2001, The Journal of Neuroscience.

[31]  K. Störtkuhl,et al.  Functional analysis of an olfactory receptor in Drosophila melanogaster , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Richard Axel,et al.  An Olfactory Sensory Map in the Fly Brain , 2000, Cell.

[33]  B. Gulyás,et al.  Olfactory Functions Are Mediated by Parallel and Hierarchical Processing , 2000, Neuron.

[34]  K. Kurihara,et al.  Lacustrine sockeye salmon return straight to their natal area from open water using both visual and olfactory cues. , 1998, Chemical senses.

[35]  Cori Bargmann,et al.  Odorant-selective genes and neurons mediate olfaction in C. elegans , 1993, Cell.

[36]  R J Zatorre,et al.  Human olfactory discrimination after unilateral frontal or temporal lobectomy. , 1991, Brain : a journal of neurology.

[37]  R. Wolf,et al.  Visual control of straight flight in Drosophila melanogaster , 1990, Journal of Comparative Physiology A.

[38]  S. Helfand,et al.  Isolation and characterization of an olfactory mutant in Drosophila with a chemically specific defect. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[39]  C. Woodard,et al.  Characterization of the larval olfactory response inDrosophila and its genetic basis , 1989, Behavior genetics.

[40]  Alexander Borst,et al.  Osmotropotaxis inDrosophila melanogaster , 1982, Journal of comparative physiology.

[41]  W. Quinn,et al.  Learning in Normal and Mutant Drosophila Larvae , 1979, Science.

[42]  J. Kennedy,et al.  Pheromone-Regulated Anemotaxis in Flying Moths , 1974, Science.

[43]  J. Goldberg,et al.  Response of binaural neurons of dog superior olivary complex to dichotic tonal stimuli: some physiological mechanisms of sound localization. , 1969, Journal of neurophysiology.

[44]  E. Russell,et al.  The Orientation of Animals , 1941, Nature.

[45]  M. R. Reed The Olfactory Reactions of Drosophila Melanogaster Meigen to the Products of Fermenting Banana , 1938, Physiological Zoology.

[46]  B. Hovemann,et al.  An increased receptive field of olfactory receptor Or43a in the antennal lobe of Drosophila reduces benzaldehyde-driven avoidance behavior. , 2005, Chemical senses.

[47]  D. Falkenburg,et al.  Drosophila melanogaster , 2005 .

[48]  Reinhard F. Stocker,et al.  The organization of the chemosensory system in Drosophila melanogaster: a rewiew , 2004, Cell and Tissue Research.

[49]  Walcott Pigeon homing: observations, experiments and confusions , 1996, The Journal of experimental biology.

[50]  Dittman,et al.  Homing in Pacific salmon: mechanisms and ecological basis , 1996, The Journal of experimental biology.

[51]  E. Batschelet Circular statistics in biology , 1981 .

[52]  Frontiers in Cellular Neuroscience Cellular Neuroscience Review Article , 2022 .