Calcium metabolism of focal and penumbral tissues in rats subjected to transient middle cerebral artery occlusion

[1]  N. Futrell Pathophysiology of Acute Ischemic Stroke: New Concepts in Cerebral Embolism , 1998, Cerebrovascular Diseases.

[2]  B. Siesjö,et al.  Changes in ionic fluxes during cerebral ischaemia. , 1997, International review of neurobiology.

[3]  B. Siesjö,et al.  Extracellular potassium in a neocortical core area after transient focal ischemia. , 1997, Stroke.

[4]  B. Siesjö,et al.  Calcium-related damage in ischemia. , 1996, Life sciences.

[5]  B. Siesjö,et al.  Mechanisms of secondary brain injury. , 1996, European journal of anaesthesiology.

[6]  Paolo Bernardi,et al.  The permeability transition pore as a mitochondrial calcium release channel: A critical appraisal , 1996, Journal of bioenergetics and biomembranes.

[7]  S. Kuroda,et al.  Secondary bioenergetic failure after transient focal ischaemia is due to mitochondrial injury. , 1996, Acta physiologica Scandinavica.

[8]  Delayed treatment with alpha-phenyl-N-tert-butyl nitrone (PBN) attenuates secondary mitochondrial dysfunction after transient focal cerebral ischemia in the rat. , 1996, Neurobiology of disease.

[9]  B. Siesjö,et al.  Chapter 2 Changes in Ionic Fluxes During Cerebral Ischaemia , 1996 .

[10]  O. Lindvall,et al.  Cyclosporin A dramatically ameliorates CA1 hippocampal damage following transient forebrain ischaemia in the rat. , 1995, Acta physiologica Scandinavica.

[11]  M. Zoratti,et al.  The mitochondrial permeability transition. , 1995, Biochimica et biophysica acta.

[12]  B. Siesjö,et al.  N-tert-butyl-alpha-phenylnitrone improves recovery of brain energy state in rats following transient focal ischemia. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[13]  N. Sims,et al.  The Calcium Content of Mitochondria from Brain Subregions Following Short‐Term Forebrain Ischemia and Recirculation in the Rat , 1994, Journal of neurochemistry.

[14]  K. Shima,et al.  Calcium Accumulation following Middle Cerebral Artery Occlusion in Stroke-Prone Spontaneously Hypertensive Rats , 1994, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[15]  Maj-Lis Smith,et al.  Hyperthermia complicates middle cerebral artery occlusion induced by an intraluminal filament , 1994, Brain Research.

[16]  I. Silver,et al.  Ions and energy in mammalian brain , 1994, Progress in Neurobiology.

[17]  B. Siesjö,et al.  The influence of pH on cellular calcium influx during ischemia , 1994, Brain Research.

[18]  D. Warner,et al.  Cortical negative DC deflections following middle cerebral artery occlusion and KCl-induced spreading depression: effect on blood flow, tissue oxygenation, and electroencephalogram. , 1994 .

[19]  K. Hossmann Glutamate‐Mediated Injury in Focal Cerebral Ischemia: The Excitotoxin Hypothesis Revised , 1994, Brain pathology.

[20]  B. Siesjö,et al.  Brain Calcium Metabolism in Hypoglycemic Coma , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[21]  M. Duchen,et al.  On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury. , 1993, Cardiovascular research.

[22]  M. Nedergaard,et al.  Characterization of Cortical Depolarizations Evoked in Focal Cerebral Ischemia , 1993, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[23]  B. Siesjö,et al.  A technique for brain temperature control during ischemia, suitable for measurements with ion-sensitive microelectrodes. , 1992, Journal of neurosurgical anesthesiology.

[24]  I. Silver,et al.  Ion Homeostasis in Rat Brain in vivo: Intra- and Extracellular [Ca2+] and [H+] in the Hippocampus during Recovery from Short-Term, Transient Ischemia , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[25]  G. Mies,et al.  Repeated Negative DC Deflections in Rat Cortex following Middle Cerebral Artery Occlusion are Abolished by MK-801: Effect on Volume of Ischemic Injury , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[26]  H. Robinson,et al.  Disturbance of Membrane Function Preceding Ischemic Delayed Neuronal Death in the Gerbil Hippocampus , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[27]  L Persson,et al.  The Effect of MK-801 on Cortical Spreading Depression in the Penumbral Zone following Focal Ischaemia in the Rat , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[28]  B. Siesjö,et al.  Penumbral Tissues Salvaged by Reperfusion Following Middle Cerebral Artery Occlusion in Rats , 1992, Stroke.

[29]  Antagonists of Excitatory Amino Acid Neurotransmitters: A comparison of their effects on global versus focal ischemia. , 1992 .

[30]  B. Siesjö,et al.  Pathophysiology and treatment of focal cerebral ischemia. Part I: Pathophysiology. , 1992, Journal of neurosurgery.

[31]  Richard J. Miller The control of neuronal Ca2+ homeostasis , 1991, Progress in Neurobiology.

[32]  I A Silver,et al.  Intracellular and extracellular changes of [Ca2+] in hypoxia and ischemia in rat brain in vivo , 1990, The Journal of general physiology.

[33]  P. Weinstein,et al.  Reversible middle cerebral artery occlusion without craniectomy in rats. , 1989, Stroke.

[34]  M. Crompton,et al.  Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. , 1988, The Biochemical journal.

[35]  B. Siesjö,et al.  Accumulation of Calcium and Loss of Potassium in the Hippocampus following Transient Cerebral Ischemia: A Proton Microprobe Study , 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[36]  S. Rapoport,et al.  Increased transfer of45Ca into brain and cerebrospinal fluid from plasma during chronic hypocalcemia in rats , 1988, Brain Research.

[37]  G. Mies,et al.  Calcium in the mitochondria following brief ischemia of gerbil brain , 1987, Neuroscience Letters.

[38]  Z. Rappaport,et al.  Regional brain calcium changes in the rat middle cerebral artery occlusion model of ischemia. , 1987, Stroke.

[39]  K. Kogure,et al.  Greater disturbance of water and ion homeostasis in the periphery of experimental focal cerebral ischemia , 1987, Experimental Neurology.

[40]  B. Siesjö,et al.  Journal of Cerebral Blood Flow and Metabolism Calcium Accumulation and Neuronal Damage in the Rat Hippocampus following Cerebral Ischemia Operative Procedures , 2022 .

[41]  E. Carafoli Intracellular calcium homeostasis. , 1987, Annual review of biochemistry.

[42]  L. Pitts,et al.  Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. , 1986, Stroke.

[43]  Yoji Yoshida,et al.  Experimental studies of ischemic brain edema , 1986 .

[44]  W. Young,et al.  Tissue Na, K, and Ca changes in regional cerebral ischemia: their measurement and interpretation. , 1986, Central nervous system trauma : journal of the American Paralysis Association.

[45]  A. Hansen,et al.  Effect of anoxia on ion distribution in the brain. , 1985, Physiological reviews.

[46]  G. Dienel Regional Accumulation of Calcium in Postischemic Rat Brain , 1984, Journal of neurochemistry.

[47]  B. Meldrum,et al.  Calcium Overload in Selectively Vulnerable Neurons of the Hippocampus during and after Ischemia: An Electron Microscopy Study in the Rat , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[48]  A. Hansen,et al.  Extracellular ion concentrations during spreading depression and ischemia in the rat brain cortex. , 1981, Acta physiologica Scandinavica.

[49]  L. Symon,et al.  Changes in Extracellular Calcium Activity in Cerebral Ischaemia , 1981, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[50]  A. Hansen,et al.  Brain Extracellular Ion Composition and EEG Activity Following 10 Minutes Ischemia in Normoand Hyperglycemic Rats , 1981, Stroke.

[51]  C. Nicholson,et al.  Calcium modulation in brain extracellular microenvironment demonstrated with ion-selective micropipette. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[52]  L. Salford,et al.  OPTIMAL FREEZING CONDITIONS FOR CEREBRAL METABOLITES IN RATS , 1973, Journal of neurochemistry.

[53]  R. Katzman.,et al.  Brain electrolytes and fluid metabolism , 1973 .

[54]  M. Bradbury,et al.  The calcium and magnesium content of skeletal muscle, brain, and cerebrospinal fluid as determined by atomic bsorption flame photometry. , 1968, The Journal of laboratory and clinical medicine.