Conformation Generation: The State of the Art

The generation of conformations for small molecules is a problem of continuing interest in cheminformatics and computational drug discovery. This review will present an overview of methods used to sample conformational space, focusing on those methods designed for organic molecules commonly of interest in drug discovery. Different approaches to both the sampling of conformational space and the scoring of conformational stability will be compared and contrasted, with an emphasis on those methods suitable for conformer sampling of large numbers of drug-like molecules. Particular attention will be devoted to the appropriate utilization of information from experimental solid-state structures in validating and evaluating the performance of these tools. The review will conclude with some areas worthy of further investigation.

[1]  J. Kirkwood Statistical Mechanics of Fluid Mixtures , 1935 .

[2]  R. Cramer,et al.  Validation of the general purpose tripos 5.2 force field , 1989 .

[3]  G. Chang,et al.  An internal-coordinate Monte Carlo method for searching conformational space , 1989 .

[4]  R. Huber,et al.  Accurate Bond and Angle Parameters for X-ray Protein Structure Refinement , 1991 .

[5]  Stephen R. Wilson,et al.  Applications of simulated annealing to the conformational analysis of flexible molecules , 1991 .

[6]  Peter S. Shenkin,et al.  Cluster analysis of molecular conformations , 1994, J. Comput. Chem..

[7]  Andrew Smellie,et al.  Analysis of Conformational Coverage, 1. Validation and Estimation of Coverage , 1995, J. Chem. Inf. Comput. Sci..

[8]  Andrew Smellie,et al.  Poling: Promoting conformational variation , 1995, J. Comput. Chem..

[9]  F. A. Neugebauer,et al.  Electrochemical oxidation and structural changes of 5,6-dihydrobenzo[c]cinnolines , 1996 .

[10]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[11]  Robin Taylor,et al.  Comparison of conformer distributions in the crystalline state with conformational energies calculated by ab initio techniques , 1996, J. Comput. Aided Mol. Des..

[12]  T. Halgren Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94 , 1996, J. Comput. Chem..

[13]  D C Spellmeyer,et al.  Conformational analysis using distance geometry methods. , 1997, Journal of molecular graphics & modelling.

[14]  István Kolossváry,et al.  Low Mode Search . An Efficient , Automated Computational Method for Conformational Analysis : Application to Cyclic and Acyclic Alkanes and Cyclic Peptides , 1997 .

[15]  Shuichi Hirono,et al.  Camdas: An automated conformational analysis system using molecular dynamics , 1997, J. Comput. Aided Mol. Des..

[16]  Garland R. Marshall,et al.  Systematic Search in Conformational Analysis , 1997 .

[17]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[18]  Michael D. Miller,et al.  Comparison of Knowledge-Based and Distance Geometry Approaches for Generation of Molecular Conformations , 2001, J. Chem. Inf. Comput. Sci..

[19]  D. Blow,et al.  Rearrangement of Cruickshank's formulae for the diffraction-component precision index. , 2002, Acta crystallographica. Section D, Biological crystallography.

[20]  Michael K. Gilson,et al.  Tork: Conformational analysis method for molecules and complexes , 2003, J. Comput. Chem..

[21]  Robert Stanton,et al.  Conformational analysis by intersection: CONAN , 2003, J. Comput. Chem..

[22]  Noriaki Hirayama,et al.  Ph4Dock: pharmacophore-based protein-ligand docking. , 2004, Journal of medicinal chemistry.

[23]  Zukang Feng,et al.  Ligand Depot: a data warehouse for ligands bound to macromolecules , 2004, Bioinform..

[24]  P. Charifson,et al.  Conformational analysis of drug-like molecules bound to proteins: an extensive study of ligand reorganization upon binding. , 2004, Journal of medicinal chemistry.

[25]  G. Klebe,et al.  DrugScore(CSD)-knowledge-based scoring function derived from small molecule crystal data with superior recognition rate of near-native ligand poses and better affinity prediction. , 2005, Journal of medicinal chemistry.

[26]  Robin Taylor,et al.  Comparing protein–ligand docking programs is difficult , 2005, Proteins.

[27]  Thierry Langer,et al.  Comparative Performance Assessment of the Conformational Model Generators Omega and Catalyst: A Large-Scale Survey on the Retrieval of Protein-Bound Ligand Conformations , 2006, J. Chem. Inf. Model..

[28]  Sun Choi,et al.  The Effects of Biasing Torsional Mutations in a Conformational GA , 2006, J. Chem. Inf. Model..

[29]  Johann Gasteiger,et al.  Impact of Conformational Flexibility on Three-Dimensional Similarity Searching Using Correlation Vectors , 2006, J. Chem. Inf. Model..

[30]  J. Irwin,et al.  Benchmarking sets for molecular docking. , 2006, Journal of medicinal chemistry.

[31]  Jonas Boström,et al.  MIMUMBA Revisited: Torsion Angle Rules for Conformer Generation Derived from X-ray Structures , 2006, J. Chem. Inf. Model..

[32]  Christian Senger,et al.  Representation of target-bound drugs by computed conformers: implications for conformational libraries , 2006, BMC Bioinformatics.

[33]  P. Hawkins,et al.  Comparison of shape-matching and docking as virtual screening tools. , 2007, Journal of medicinal chemistry.

[34]  Mark S. Johnson,et al.  Generating Conformer Ensembles Using a Multiobjective Genetic Algorithm , 2007, J. Chem. Inf. Model..

[35]  Gerard J Kleywegt,et al.  ValLigURL: a server for ligand-structure comparison and validation. , 2007, Acta crystallographica. Section D, Biological crystallography.

[36]  Omar Haq,et al.  Torsion Angle Preference and Energetics of Small-Molecule Ligands Bound to Proteins , 2007, J. Chem. Inf. Model..

[37]  Eric J. Martin,et al.  Conformational Sampling of Bioactive Molecules: A Comparative Study , 2007, J. Chem. Inf. Model..

[38]  Yuan-Ping Pang,et al.  Preference of Small Molecules for Local Minimum Conformations when Binding to Proteins , 2007, PloS one.

[39]  Ovanes Mekenyan,et al.  Conformational Coverage by a Genetic Algorithm: Saturation of Conformational Space , 2007, J. Chem. Inf. Model..

[40]  David Lagorce,et al.  MS-DOCK: Accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening , 2008, BMC Bioinformatics.

[41]  András Aszódi,et al.  Analyzing the performance of conformational search programs on compound databases. , 2007, Journal of molecular graphics & modelling.

[42]  Evan Bolton,et al.  Assessment of Conformational Ensemble Sizes Necessary for Specific Resolutions of Coverage of Conformational Space , 2007, J. Chem. Inf. Model..

[43]  Brian B. Masek,et al.  A knowledge-based approach to generating diverse but energetically representative ensembles of ligand conformers , 2008, J. Comput. Aided Mol. Des..

[44]  Martin Stahl,et al.  Small Molecule Conformational Preferences Derived from Crystal Structure Data. A Medicinal Chemistry Focused Analysis , 2008, J. Chem. Inf. Model..

[45]  Matthias Rarey,et al.  Conformational Sampling for Large-Scale Virtual Screening: Accuracy versus Ensemble Size , 2009, J. Chem. Inf. Model..

[46]  Olivier Sperandio,et al.  MED-3DMC: a new tool to generate 3D conformation ensembles of small molecules with a Monte Carlo sampling of the conformational space. , 2009, European journal of medicinal chemistry.

[47]  Christine Humblet,et al.  GARD: A Generally Applicable Replacement for RMSD , 2009, J. Chem. Inf. Model..

[48]  Maria A Miteva,et al.  DG-AMMOS: A New tool to generate 3D conformation of small molecules using Distance Geometry and Automated Molecular Mechanics Optimization for in silico Screening , 2009, BMC chemical biology.

[49]  Keith T. Butler,et al.  Toward accurate relative energy predictions of the bioactive conformation of drugs , 2009, J. Comput. Chem..

[50]  Gerard J. Kleywegt,et al.  On vital aid: the why, what and how of validation , 2009, Acta crystallographica. Section D, Biological crystallography.

[51]  Michiko Amano,et al.  Novel Method for the Evaluation of 3D Conformation Generators , 2009, J. Chem. Inf. Model..

[52]  Paul Labute,et al.  LowModeMD - Implicit Low-Mode Velocity Filtering Applied to Conformational Search of Macrocycles and Protein Loops , 2010, J. Chem. Inf. Model..

[53]  A. Nicholls,et al.  Ligand Entropy in Gas-Phase, Upon Solvation and Protein Complexation. Fast Estimation with Quasi-Newton Hessian. , 2010, Journal of chemical theory and computation.

[54]  Xicheng Wang,et al.  Bioactive conformational generation of small molecules: A comparative analysis between force-field and multiple empirical criteria based methods , 2010, BMC Bioinformatics.

[55]  Pu Liu,et al.  Stochastic Proximity Embedding: Methods and Applications , 2010, Molecular informatics.

[56]  Woody Sherman,et al.  ConfGen: A Conformational Search Method for Efficient Generation of Bioactive Conformers , 2010, J. Chem. Inf. Model..

[57]  Pierre Tufféry,et al.  Frog2: Efficient 3D conformation ensemble generator for small compounds , 2010, Nucleic Acids Res..

[58]  Christof H. Schwab,et al.  Conformations and 3D pharmacophore searching. , 2010, Drug discovery today. Technologies.

[59]  Jitender Verma,et al.  3D-QSAR in drug design--a review. , 2010, Current topics in medicinal chemistry.

[60]  Benjamin A. Ellingson,et al.  Conformer Generation with OMEGA: Algorithm and Validation Using High Quality Structures from the Protein Databank and Cambridge Structural Database , 2010, J. Chem. Inf. Model..

[61]  Alexander D. MacKerell,et al.  CHARMM general force field: A force field for drug‐like molecules compatible with the CHARMM all‐atom additive biological force fields , 2009, J. Comput. Chem..

[62]  Nicolas Foloppe,et al.  Is conformational sampling of drug‐like molecules a solved problem? , 2011 .

[63]  Mark McGann,et al.  FRED Pose Prediction and Virtual Screening Accuracy , 2011, J. Chem. Inf. Model..

[64]  Anita R. Maguire,et al.  Confab - Systematic generation of diverse low-energy conformers , 2011, J. Cheminformatics.

[65]  Pierre Baldi,et al.  Data-Driven High-Throughput Prediction of the 3-D Structure of Small Molecules: Review and Progress , 2011, J. Chem. Inf. Model..

[66]  Alexander D. MacKerell,et al.  Computational ligand-based rational design: Role of conformational sampling and force fields in model development. , 2011, MedChemComm.

[67]  Christoph Grebner,et al.  Efficiency of tabu‐search‐based conformational search algorithms , 2011, J. Comput. Chem..

[68]  Robin Taylor,et al.  Short Nonbonded Contact Distances in Organic Molecules and Their Use as Atom-Clash Criteria in Conformer Validation and Searching , 2011, J. Chem. Inf. Model..

[69]  Xue Li,et al.  Accurate assessment of the strain energy in a protein‐bound drug using QM/MM X‐ray refinement and converged quantum chemistry , 2011, J. Comput. Chem..

[70]  F. Allen,et al.  Systematic conformational bias in small-molecule crystal structures is rare and explicable , 2012 .

[71]  Robin Taylor,et al.  Validating and Understanding Ring Conformations Using Small Molecule Crystallographic Data , 2012, J. Chem. Inf. Model..

[72]  Anthony Nicholls,et al.  Essential considerations for using protein-ligand structures in drug discovery. , 2012, Drug discovery today.

[73]  Tjelvar S. G. Olsson,et al.  The good, the bad and the twisted: a survey of ligand geometry in protein crystal structures , 2012, Journal of Computer-Aided Molecular Design.

[74]  Conformational bias in small-molecule crystal structures is rare (and explicable) , 2012 .

[75]  Anthony Nicholls,et al.  Conformer Generation with OMEGA: Learning from the Data Set and the Analysis of Failures , 2012, J. Chem. Inf. Model..

[76]  Igor V. Filippov,et al.  PDB Ligand Conformational Energies Calculated Quantum-Mechanically , 2012, J. Chem. Inf. Model..

[77]  Cristiano Ruch Werneck Guimarães,et al.  Use of 3D Properties to Characterize Beyond Rule-of-5 Property Space for Passive Permeation , 2012, J. Chem. Inf. Model..

[78]  R. Pascal,et al.  Ideal Molecular Conformation versus Crystal Site Symmetry , 2012 .

[79]  Adrià Cereto-Massagué,et al.  The good, the bad and the dubious: VHELIBS, a validation helper for ligands and binding sites , 2013, Journal of Cheminformatics.

[80]  Matthias Rarey,et al.  CONFECT: Conformations from an Expert Collection of Torsion Patterns , 2013, ChemMedChem.

[81]  Matthias Rarey,et al.  Torsion angle preferences in druglike chemical space: a comprehensive guide. , 2013, Journal of medicinal chemistry.

[82]  Zheng Zheng,et al.  Development of the Knowledge-Based and Empirical Combined Scoring Algorithm (KECSA) To Score Protein-Ligand Interactions , 2013, J. Chem. Inf. Model..

[83]  The Application of Statistical Methods to Cognate Docking: A Path Forward? , 2014, J. Chem. Inf. Model..

[84]  Fei Long,et al.  The PDB_REDO server for macromolecular structure model optimization , 2014, IUCrJ.

[85]  James F Cuff,et al.  Systematic approach to conformational sampling for assigning absolute configuration using vibrational circular dichroism. , 2014, Journal of medicinal chemistry.

[86]  Andrew J. Tebben,et al.  Macrocycle Conformational Sampling with MacroModel , 2014, J. Chem. Inf. Model..

[87]  Charles H Reynolds,et al.  Protein-ligand cocrystal structures: we can do better. , 2014, ACS medicinal chemistry letters.

[88]  Dima Kozakov,et al.  How Proteins Bind Macrocycles , 2014, Nature chemical biology.

[89]  Zbigniew Dauter,et al.  The quality and validation of structures from structural genomics. , 2014, Methods in molecular biology.

[90]  M. Scheffler,et al.  Validation challenge of density-functional theory for peptides-example of Ac-Phe-Ala5-LysH(+). , 2014, The journal of physical chemistry. A.

[91]  Ting Wang,et al.  Free Energy-Based Conformational Search Algorithm Using the Movable Type Sampling Method. , 2015, Journal of chemical theory and computation.

[92]  Sereina Riniker,et al.  Better Informed Distance Geometry: Using What We Know To Improve Conformation Generation , 2015, J. Chem. Inf. Model..

[93]  Carsten Baldauf,et al.  First-Principles Molecular Structure Search with a Genetic Algorithm , 2015, J. Chem. Inf. Model..

[94]  Hanoch Senderowitz,et al.  Toward Focusing Conformational Ensembles on Bioactive Conformations: A Molecular Mechanics/Quantum Mechanics Study , 2015, J. Chem. Inf. Model..

[95]  Nikolai S. Zefirov,et al.  Progress in visual representations of chemical space , 2015, Expert opinion on drug discovery.

[96]  A. Cavalli,et al.  Role of Molecular Dynamics and Related Methods in Drug Discovery. , 2016, Journal of medicinal chemistry.

[97]  Paul D. Adams,et al.  Improved ligand geometries in crystallographic refinement using AFITT in PHENIX , 2016, Acta crystallographica. Section D, Structural biology.

[98]  W. Guba,et al.  A Real-World Perspective on Molecular Design. , 2016, Journal of medicinal chemistry.

[99]  I. Bruno,et al.  Cambridge Structural Database , 2002 .

[100]  Matthew P Jacobson,et al.  Exhaustive Conformational Sampling of Complex Fused Ring Macrocycles Using Inverse Kinematics. , 2016, Journal of chemical theory and computation.

[101]  Patrick McCabe,et al.  Knowledge-Based Optimization of Molecular Geometries Using Crystal Structures , 2016, J. Chem. Inf. Model..

[102]  Matthias Rarey,et al.  Torsion Library Reloaded: A New Version of Expert-Derived SMARTS Rules for Assessing Conformations of Small Molecules , 2016, J. Chem. Inf. Model..

[103]  Ajay N. Jain,et al.  ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs , 2017, Journal of Computer-Aided Molecular Design.

[104]  Matthias Rarey,et al.  High-Quality Dataset of Protein-Bound Ligand Conformations and Its Application to Benchmarking Conformer Ensemble Generators , 2017, J. Chem. Inf. Model..