Proactive Dynamic Distributed Constraint Optimization

Current approaches that model dynamism in DCOPs solve a sequence of static problems, reacting to changes in the environment as the agents observe them. Such approaches thus ignore possible predictions on future changes. To overcome this limitation, we introduce Proactive Dynamic DCOPs (PD-DCOPs), a novel formalism to model dynamic DCOPs in the presence of exogenous uncertainty. In contrast to reactive approaches, PD-DCOPs are able to explicitly model the possible changes to the problem, and take such information into account proactively, when solving the dynamically changing problem. The additional expressivity of this formalism allows it to model a wider variety of distributed optimization problems. Our work presents both theoretical and practical contributions that advance current dynamic DCOP models: (i) we introduce the PD-DCOP model, which explicitly captures dynamic changes of the DCOP over time; (ii) we discuss the complexity of this new class of DCOPs; and (iii) we develop both exact and approximation algorithms with quality guarantees to solve PD-DCOPs proactively.

[1]  Milind Tambe,et al.  Taking DCOP to the real world: efficient complete solutions for distributed multi-event scheduling , 2004, Proceedings of the Third International Joint Conference on Autonomous Agents and Multiagent Systems, 2004. AAMAS 2004..

[2]  Makoto Yokoo,et al.  Coalition Structure Generation based on Distributed Constraint Optimization , 2010, AAAI.

[3]  François Charpillet,et al.  MAA*: A Heuristic Search Algorithm for Solving Decentralized POMDPs , 2005, UAI.

[4]  Sven Koenig,et al.  BnB-ADOPT: an asynchronous branch-and-bound DCOP algorithm , 2008, AAMAS.

[5]  Eugene C. Freuder,et al.  Stable Solutions for Dynamic Constraint Satisfaction Problems , 1998, CP.

[6]  Nicholas R. Jennings,et al.  Deploying the max-sum algorithm for decentralised coordination and task allocation of unmanned aerial vehicles for live aerial imagery collection , 2012, 2012 IEEE International Conference on Robotics and Automation.

[7]  François Charpillet,et al.  Producing efficient error-bounded solutions for transition independent decentralized mdps , 2013, AAMAS.

[8]  Sarvapali D. Ramchurn,et al.  Optimal decentralised dispatch of embedded generation in the smart grid , 2012, AAMAS.

[9]  Thomas Schiex,et al.  Mixed Constraint Satisfaction: A Framework for Decision Problems under Incomplete Knowledge , 1996, AAAI/IAAI, Vol. 1.

[10]  相場亮 Distributed Constraint Satisfaction: Foundations of Cooperation in Multi - Agent Systems , 2001 .

[11]  Sven Koenig,et al.  Incremental DCOP Search Algorithms for Solving Dynamic DCOP Problems , 2015, 2015 IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology (WI-IAT).

[12]  Shlomo Zilberstein,et al.  Memory-Bounded Dynamic Programming for DEC-POMDPs , 2007, IJCAI.

[13]  Sven Koenig,et al.  Incremental DCOP search algorithms for solving dynamic DCOPs , 2011, AAMAS.

[14]  Milind Tambe,et al.  Distributed Algorithms for DCOP: A Graphical-Game-Based Approach , 2004, PDCS.

[15]  Edmund H. Durfee,et al.  Towards a unifying characterization for quantifying weak coupling in dec-POMDPs , 2011, AAMAS.

[16]  Boi Faltings,et al.  Distributed constraint optimization with structured resource constraints , 2009, AAMAS.

[17]  Barry O'Sullivan,et al.  Weighted Super Solutions for Constraint Programs , 2005, AAAI.

[18]  Hoong Chuin Lau,et al.  Decentralized Multi-Agent Reinforcement Learning in Average-Reward Dynamic DCOPs , 2014, AAAI.

[19]  Toby Walsh,et al.  Stochastic Constraint Programming: A Scenario-Based Approach , 2009, Constraints.

[20]  Boi Faltings,et al.  A Scalable Method for Multiagent Constraint Optimization , 2005, IJCAI.

[21]  Boi Faltings,et al.  S-DPOP: Superstabilizing, Fault-containing Multiagent Combinatorial Optimization , 2005, AAAI 2005.

[22]  Makoto Yokoo,et al.  Adopt: asynchronous distributed constraint optimization with quality guarantees , 2005, Artif. Intell..

[23]  B. Faltings,et al.  Superstabilizing , Fault-containing Multiagent Combinatorial Optimization , 2022 .

[24]  Makoto Yokoo,et al.  Networked Distributed POMDPs: A Synergy of Distributed Constraint Optimization and POMDPs , 2005, IJCAI.

[25]  Robert N. Lass,et al.  Dynamic Distributed Constraint Reasoning , 2008, AAAI.

[26]  Toby Walsh,et al.  Stochastic Constraint Programming , 2002, ECAI.

[27]  Neil Immerman,et al.  The Complexity of Decentralized Control of Markov Decision Processes , 2000, UAI.

[28]  Boi Faltings,et al.  Coordinating Logistics Operations with Privacy Guarantees , 2011, IJCAI.

[29]  Boi Faltings,et al.  Superstabilizing, Fault-Containing Distributed Combinatorial Optimization , 2005, AAAI.

[30]  Claudia V. Goldman,et al.  Solving Transition Independent Decentralized Markov Decision Processes , 2004, J. Artif. Intell. Res..

[31]  Makoto Yokoo,et al.  Distributed Problem Solving , 2012, AI Mag..

[32]  Arnaud Doniec,et al.  Scaling Up Decentralized MDPs Through Heuristic Search , 2012, UAI.

[33]  Joël Quinqueton,et al.  Distributed Intelligent Backtracking , 1998, ECAI.

[34]  Steven Okamoto,et al.  Distributed constraint optimization for teams of mobile sensing agents , 2014, Autonomous Agents and Multi-Agent Systems.

[35]  A. Petcu,et al.  Optimal Solution Stability in Dynamic, Distributed Constraint Optimization , 2007, 2007 IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT'07).

[36]  Shlomo Zilberstein,et al.  Dynamic Programming for Partially Observable Stochastic Games , 2004, AAAI.

[37]  Nicholas R. Jennings,et al.  Agent-based decentralised coordination for sensor networks using the max-sum algorithm , 2014, Autonomous Agents and Multi-Agent Systems.

[38]  Makoto Yokoo,et al.  Taming Decentralized POMDPs: Towards Efficient Policy Computation for Multiagent Settings , 2003, IJCAI.

[39]  Shimon Whiteson,et al.  Incremental Clustering and Expansion for Faster Optimal Planning in Dec-POMDPs , 2013, J. Artif. Intell. Res..