Disentangling diffusion from jumps
暂无分享,去创建一个
[1] L. Hansen. Large Sample Properties of Generalized Method of Moments Estimators , 1982 .
[2] N. Shephard,et al. Power and bipower variation with stochastic volatility and jumps , 2003 .
[3] P. Carr,et al. Time-Changed Levy Processes and Option Pricing ⁄ , 2002 .
[4] Expansion of transition distributions of Lévy processes in small time , 2002 .
[5] N. Kiefer. Discrete Parameter Variation: Efficient Estimation of a Switching Regression Model , 1978 .
[6] D. Ray,et al. Stationary Markov processes with continuous paths , 1956 .
[7] C. Granger,et al. A long memory property of stock market returns and a new model , 1993 .
[8] S. Beckers. A Note on Estimating the Parameters of the Diffusion-Jump Model of Stock Returns , 1981, Journal of Financial and Quantitative Analysis.
[9] Telling from Discrete Data Whether the Underlying Continuous-Time Model is a Diffusion , 2002 .
[10] Yacine Aït-Sahalia. Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed‐form Approximation Approach , 2002 .
[11] P. Honoré. Pitfalls in Estimating Jump-Diffusion Models , 1998 .
[12] R. Léandre,et al. Densite en temps petit d'un processus de sauts , 1987 .
[13] E. Eberlein,et al. New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .
[14] Ernst Eberlein,et al. Term Structure Models Driven by General Lévy Processes , 1999 .
[15] M. Yor,et al. The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .
[16] S. James Press,et al. A Compound Events Model for Security Prices , 1967 .
[17] P. Carr,et al. The Variance Gamma Process and Option Pricing , 1998 .
[18] T. Chan. Pricing contingent claims on stocks driven by Lévy processes , 1999 .
[19] A. Gallant,et al. Alternative models for stock price dynamics , 2003 .
[20] Yacine Ait-Sahalia,et al. The Effects of Random and Discrete Sampling When Estimating Continuous-Time Diffusions , 2002 .
[21] W. Torous,et al. A Simplified Jump Process for Common Stock Returns , 1983, Journal of Financial and Quantitative Analysis.
[22] P. Carr,et al. What Type of Process Underlies Options? A Simple Robust Test , 2003 .
[23] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[24] P. Mykland,et al. How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .
[25] R. C. Merton,et al. Option pricing when underlying stock returns are discontinuous , 1976 .
[26] J. Picard. Density in small time for Lévy processes , 1997 .
[27] A. Gallant,et al. Alternative Models of Stock Prices Dynamics , 2001 .
[28] Nicholas G. Polson,et al. The Impact of Jumps in Volatility and Returns , 2000 .
[29] D. Lépingle,et al. La variation d'ordre p des semi-martingales , 1976 .