Disentangling diffusion from jumps

Abstract Realistic models for financial asset prices used in portfolio choice, option pricing or risk management include both a continuous Brownian and a jump components. This paper studies our ability to distinguish one from the other. I find that, surprisingly, it is possible to perfectly disentangle Brownian noise from jumps. This is true even if, unlike the usual Poisson jumps, the jump process exhibits an infinite number of small jumps in any finite time interval, which ought to be harder to distinguish from Brownian noise, itself made up of many small moves.

[1]  L. Hansen Large Sample Properties of Generalized Method of Moments Estimators , 1982 .

[2]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[3]  P. Carr,et al.  Time-Changed Levy Processes and Option Pricing ⁄ , 2002 .

[4]  Expansion of transition distributions of Lévy processes in small time , 2002 .

[5]  N. Kiefer Discrete Parameter Variation: Efficient Estimation of a Switching Regression Model , 1978 .

[6]  D. Ray,et al.  Stationary Markov processes with continuous paths , 1956 .

[7]  C. Granger,et al.  A long memory property of stock market returns and a new model , 1993 .

[8]  S. Beckers A Note on Estimating the Parameters of the Diffusion-Jump Model of Stock Returns , 1981, Journal of Financial and Quantitative Analysis.

[9]  Telling from Discrete Data Whether the Underlying Continuous-Time Model is a Diffusion , 2002 .

[10]  Yacine Aït-Sahalia Maximum Likelihood Estimation of Discretely Sampled Diffusions: A Closed‐form Approximation Approach , 2002 .

[11]  P. Honoré Pitfalls in Estimating Jump-Diffusion Models , 1998 .

[12]  R. Léandre,et al.  Densite en temps petit d'un processus de sauts , 1987 .

[13]  E. Eberlein,et al.  New Insights into Smile, Mispricing, and Value at Risk: The Hyperbolic Model , 1998 .

[14]  Ernst Eberlein,et al.  Term Structure Models Driven by General Lévy Processes , 1999 .

[15]  M. Yor,et al.  The Fine Structure of Asset Retums : An Empirical Investigation ' , 2006 .

[16]  S. James Press,et al.  A Compound Events Model for Security Prices , 1967 .

[17]  P. Carr,et al.  The Variance Gamma Process and Option Pricing , 1998 .

[18]  T. Chan Pricing contingent claims on stocks driven by Lévy processes , 1999 .

[19]  A. Gallant,et al.  Alternative models for stock price dynamics , 2003 .

[20]  Yacine Ait-Sahalia,et al.  The Effects of Random and Discrete Sampling When Estimating Continuous-Time Diffusions , 2002 .

[21]  W. Torous,et al.  A Simplified Jump Process for Common Stock Returns , 1983, Journal of Financial and Quantitative Analysis.

[22]  P. Carr,et al.  What Type of Process Underlies Options? A Simple Robust Test , 2003 .

[23]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[24]  P. Mykland,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .

[25]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[26]  J. Picard Density in small time for Lévy processes , 1997 .

[27]  A. Gallant,et al.  Alternative Models of Stock Prices Dynamics , 2001 .

[28]  Nicholas G. Polson,et al.  The Impact of Jumps in Volatility and Returns , 2000 .

[29]  D. Lépingle,et al.  La variation d'ordre p des semi-martingales , 1976 .