The third law of thermodynamics and the fractional entropies

Abstract We consider the fractal calculus based Ubriaco and Machado entropies and investigate whether they conform to the third law of thermodynamics. The Ubriaco entropy satisfies the third law of thermodynamics in the interval 0 q ≤ 1 exactly where it is also thermodynamically stable. The Machado entropy, on the other hand, yields diverging inverse temperature in the region 0 q ≤ 1 , albeit with non-vanishing negative entropy values. Therefore, despite the divergent inverse temperature behavior, the Machado entropy fails the third law of thermodynamics. We also show that the aforementioned results are also supported by the one-dimensional Ising model with no external field.

[1]  J L Reis,et al.  Occupancy of rotational population in molecular spectra based on nonextensive statistics. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  M. Tribeche,et al.  Planck radiation law and Einstein coefficients reexamined in Kaniadakis κ statistics. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[3]  P. S. Pal,et al.  Single-particle stochastic heat engine. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  XinJun Mao,et al.  Information Entropy-Based Metrics for Measuring Emergences in Artificial Societies , 2014, Entropy.

[5]  Gregory Bulnes Cuetara,et al.  Double quantum dot coupled to a quantum point contact: a stochastic thermodynamics approach , 2015, 1506.04769.

[6]  Péter Ván,et al.  Quark-gluon plasma connected to finite heat bath , 2013 .

[7]  Tam'as S. Bir'o,et al.  A q-parameter bound for particle spectra based on black hole thermodynamics with Rényi entropy , 2013, 1309.4261.

[8]  Ramazan Sever,et al.  On the problem of constraints in nonextensive formalism: A quantum mechanical treatment , 2006, cond-mat/0603047.

[9]  Massimiliano Esposito,et al.  Ensemble and trajectory thermodynamics: A brief introduction , 2014, 1403.1777.

[10]  G. Kaniadakis,et al.  Statistical mechanics in the context of special relativity. II. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[11]  C. Tsallis Introduction to Nonextensive Statistical Mechanics: Approaching a Complex World , 2009 .

[12]  G. Bagci Nonextensive reaction rate , 2007, 0705.2050.

[13]  G M Viswanathan,et al.  Third law of thermodynamics as a key test of generalized entropies. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Hamid A. Jalab,et al.  Fractional Differential Texture Descriptors Based on the Machado Entropy for Image Splicing Detection , 2015, Entropy.

[15]  M. Ubriaco,et al.  Entropies based on fractional calculus , 2009, 0902.2726.

[16]  Giulia Rotundo,et al.  Black–Scholes–Schrödinger–Zipf–Mandelbrot model framework for improving a study of the coauthor core score , 2014 .

[17]  G. Bagci,et al.  Validity of the third law of thermodynamics for the Tsallis entropy. , 2016, Physical review. E.

[18]  Alfréd Rényi,et al.  Probability Theory , 1970 .

[19]  J. A. Tenreiro Machado,et al.  Fractional order description of DNA , 2015 .

[20]  NON-EXTENSIVE STUDY OF RIGID AND NON-RIGID ROTATORS , 2003, cond-mat/0303523.

[21]  Chun-Yang Wang,et al.  Fractional entropy decay and the third law of thermodynamics. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Vasile Preda,et al.  New measure selection for Hunt–Devolder semi-Markov regime switching interest rate models , 2014 .

[23]  Sudha,et al.  From the quantum relative Tsallis entropy to its conditional form: Separability criterion beyond local and global spectra , 2013, 1309.6944.

[24]  M. Esposito,et al.  Finite-time erasing of information stored in fermionic bits. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[25]  A. G. Bashkirov Maximum Renyi entropy principle for systems with power-law Hamiltonians. , 2004, Physical review letters.

[26]  José António Tenreiro Machado,et al.  Multidimensional Scaling Visualization Using Parametric Similarity Indices , 2015, Entropy.

[27]  José António Tenreiro Machado,et al.  Fractional Order Generalized Information , 2014, Entropy.

[28]  Ugur Tirnakli,et al.  On the way towards a generalized entropy maximization procedure , 2008, 0811.4564.

[29]  The validity of the third law of thermodynamics for the Rényi and homogeneous entropies , 2015 .

[30]  Constantino Tsallis,et al.  Black hole thermodynamical entropy , 2012, 1202.2154.