Projective Forcing

We study the projective posets and their properties as forcing notions. We also define Martin’s axiom restricted to projective sets, MA(proj), and show that this axiom is weaker than full Martin’s axiom by proving the consistency of ZFC + XH + MA(proj) with “there exists a Suslin tree”, “there exists a non-strong gap”, “there exists an entangled set of reals” and “there exists K < 2No such that 2No < 2K”.

[1]  Saharon Shelah,et al.  Can you take Solovay’s inaccessible away? , 1984 .

[2]  Jörg Brendle Amoeba-Absoluteness and Projective Measurability , 1993, J. Symb. Log..

[3]  N Lusin Lecons sur les ensembles analytiques , 1930 .

[4]  Saharon Shelah How special are Cohen and random forcings, i.e. boolean algebras of the family of subsets of reals modulo meagre or null , 1993 .

[5]  M. Bekkali Chains and Antichains in Interval Algebras , 1994, J. Symb. Log..

[6]  Saharon Shelah,et al.  Forcings with ideals and simple forcing notions , 1989 .

[7]  Saharon Shelah,et al.  More on Simple Forcing Notions and Forcings with Ideals , 1993, Ann. Pure Appl. Log..

[8]  R. M. Solovay,et al.  Iterated Cohen extensions and Souslin's problem* , 1971 .

[9]  R. M. Solovay,et al.  Some Applications of Almost Disjoint Sets , 1970 .

[10]  Haim Judah Absoluteness for projective sets , 1993 .

[11]  W. Hugh Woodin On the Consistency Strength of Projective UNI Formization , 1982 .

[12]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[13]  Saharon Shelah,et al.  Souslin Forcing , 1988, J. Symb. Log..

[14]  K. Gödel The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Saharon Shelah,et al.  Martin’s axiom does not imply that every two ℕ1-dense sets of reals are isomorphic , 1981 .

[16]  Donald A. Martin,et al.  Internal cohen extensions , 1970 .

[17]  P. J. Cohen,et al.  THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS, II. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Saharon Shelah,et al.  Combinatorial Properties of Hechler Forcing , 1992, Ann. Pure Appl. Log..

[19]  Stevo Todorcevic Remarks on Martin's axiom and the continuum hypothesis , 1991 .

[20]  R. Solovay A model of set-theory in which every set of reals is Lebesgue measurable* , 1970 .

[21]  S. Todorcevic Two examples of Borel partially ordered sets with the countable chain condition , 1991 .

[22]  Joan Bagaria A Characterization of Martin's Axiom in Terms of Absoluteness , 1997, J. Symb. Log..

[23]  Saharon Shelah,et al.  Martin's axioms, measurability and equiconsistency results , 1989, Journal of Symbolic Logic.

[24]  S. Tennenbaum,et al.  Souslin'S problem. , 1968, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Haim Judah,et al.  Martin's axiom and the continuum , 1995, Journal of Symbolic Logic.

[26]  Saharon Shelah,et al.  Simple Forcing Notions and Forcing Axioms , 1997, J. Symb. Log..

[27]  Saharon Shelah,et al.  Some exact equiconsistency results in set theory , 1985, Notre Dame J. Formal Log..

[28]  William G. Fleissner,et al.  Definable forcing axiom: an alternative to Martin's axiom , 1990 .

[29]  Jaime I. Ihoda Δ 1 2 -sets of reals , 1988 .

[30]  J. Bagaria,et al.  Amoeba Forcing, Suslin Absoluteness and Additivity of Measure , 1992 .

[31]  Kenneth Kunen,et al.  Set Theory: An Introduction to Independence Proofs , 2010 .