Prediction of solubility of biomolecules in supercritical solvents

The supercritical .uid extraction (SFE) is considered an appropriate alternative for separation of biomolecules from food and pharmaceutical products. A major di2culty in utilizing the SFE for biomolecules has been the di2culty in measurement and prediction of their solubilities in supercritical solvents at various pressures and temperatures for process optimization. Lack of data for intermolecular energy parameters and=or critical properties, acentric factors, and molar refractions limits us to the use of the simple equations of state for prediction of their solubilities in supercritical solvents. In this report, six di8erent cubic equations of state are used to predict the solubility of cholesterol and � -carotene, as two representative biomolecules, in supercritical .uids. They are the van der Waals, Redlich–Kwong, Mohsen-Nia–Moddaress–Mansoori (MMM), Peng–Robinson (PR) and Patel–Teja and modi=ed PR equations. It is shown that the two-parameter MMM equation is more accurate than =ve of the other equations and comparable to the modi=ed PR equation in predicting the solubility of cholesterol and � -carotene in supercritical .uids. ? 2001 Elsevier Science Ltd. All rights reserved.

[1]  T. Y. Kwak,et al.  Statistical mechanical description of supercritical fluid extraction and retrograde condensation , 1987 .

[2]  W. Seider,et al.  Equilibrium solubilities of β-carotene in supercritical carbon dioxide , 1990 .

[3]  G. Mansoori,et al.  Density expansion (DEX) mixing rules: Thermodynamic modeling of supercritical extraction , 1985 .

[4]  K. Johnston,et al.  Solubilization of Biomolecules in Carbon Dioxide Based Supercritical Fluids , 1986, Biotechnology progress.

[5]  W. M. Haynes CRC Handbook of Chemistry and Physics , 1990 .

[6]  J. Kinsella,et al.  Extraction of Lipid and Cholesterol from Fish Muscle with Supercritical Fluids , 1988 .

[7]  Mohammad R. Riazi,et al.  Simple equation of state accurately predicts hydrocarbon densities , 1993 .

[8]  G. D. Holder,et al.  Solubility of progesterone, testosterone, and cholesterol in supercritical fluids☆ , 1992 .

[9]  Enzo Cadoni,et al.  Supercritical CO2 extraction of lycopene and β-carotene from ripe tomatoes , 1999 .

[10]  G. Brunner,et al.  Supercritical extraction of carotenoids and lipids from buriti (Mauritia flexuosa), a fruit from the Amazon region , 1999 .

[11]  Y. Garrabos,et al.  Contribution to the determination of the solubility of β-carotene in supercritical carbon dioxide and nitrous oxide : experimental data and modeling , 1997 .

[12]  Ralf Dohrn,et al.  High-pressure fluid-phase equilibria: Experimental methods and systems investigated (1988–1993) , 1995 .

[13]  Neil R. Foster,et al.  Solubility of cholesterol in supercritical carbon dioxide , 1991 .

[14]  S. Colowick,et al.  Methods in Enzymology , Vol , 1966 .

[15]  J. Chrastil,et al.  Solubility of solids and liquids in supercritical gases , 1982 .

[16]  D. Tomasko,et al.  Polar and nonpolar cosolvent effects on the solubility of cholesterol in supercritical fluids , 1993 .

[17]  D. Tomasko,et al.  Solubility of cholesterol in supercritical ethane and binary gas mixtures containing ethane , 1993 .

[18]  V. Krukonis,et al.  Supercritical fluid technology , 1985 .

[19]  K. Kobe The properties of gases and liquids , 1959 .

[20]  S. Mulvaney,et al.  Supercritical CO2 Conditions Affecting Extraction of Lipid and Cholesterol from Ground Beef , 1991 .

[21]  G. Mansoori,et al.  Solubility modeling of solids in supercritical fluids using the Kirkwood-Buff fluctuation integral with the hard-sphere expansion (RISE) theory , 1993 .

[22]  T. Guo,et al.  Phase behavior of a near-critical reservoir fluid mixture , 1997 .

[23]  A. Suwono,et al.  PREDICTION OF MOLAR VOLUMES, VAPOR PRESSURES AND SUPERCRITICAL SOLUBILITIES OF ALKANES BY EQUATIONS OF STATE , 1999 .

[24]  Stanley M. Walas,et al.  Phase equilibria in chemical engineering , 1985 .

[25]  R. Reid,et al.  The Properties of Gases and Liquids , 1977 .

[26]  G. M. Acosta,et al.  Supercritical extraction of fat from phospholipid biomembrane structures , 1994 .

[27]  G. Mansoori,et al.  Bioseparation Using Supercritical Fluid Extraction/Retrograde Condensation , 1988, Bio/Technology.

[28]  An-I Yeh,et al.  Separation of fatty acid esters from cholesterol in esterified natural and synthetic mixtures by supercritical carbon dioxide , 1991 .

[29]  M. Mohsennia,et al.  A CUBIC EQUATION OF STATE BASED ON A SIMPLIFIED HARD-CORE MODEL , 1995 .

[30]  G. Brunner,et al.  Solubilities of the xanthines caffeine, theophylline and theobromine in supercritical carbon dioxide , 1994 .

[31]  G. Schneider,et al.  High pressure phase equilibria: experimental methods , 1986 .

[32]  M. Habulin,et al.  Solubility of β-carotene and oleic acid in dense CO2 and data correlation by a density based model , 1995 .

[33]  T. Y. Kwak,et al.  Van der Waals mixing rules for cubic equations of state: applications for supercritical fluid extraction modelling , 1986 .

[34]  J. Voigt,et al.  Handbook of Chemical Property Estimation Methods. Environmental Behaviour of Organic Compounds. Herausgegeben von W. J. Lyman, W. F. Reehl und D. H. Rosenblatt. Ca. 1000 Seiten, zahlr. Tab. American Chemical Society, Washington, DC, 1990. Preis: 49,95 $ , 1992 .

[35]  G. Brunner,et al.  Solubilities of the Fat-Soluble Vitamins A, D, E, and K in Supercritical Carbon Dioxide , 1997 .

[36]  Ireneo Kikic,et al.  High pressure fluid phase equilibria : experimental methods and systems investigated (1978-1987) , 1990 .

[37]  M. D. Saldaña,et al.  Reduction in the cholesterol content of butter oil using supercritical ethane extraction and adsorption on alumina , 2000 .

[38]  J. King,et al.  Extraction of fat tissue from meat products with supercritical carbon dioxide , 1989 .

[39]  G. Mansoori,et al.  Supercritical Fluid Extraction for Remediation of Contaminated Soil , 1997 .

[40]  W. F. Reehl,et al.  Handbook of Chemical Property Estimation Methods: Environmental Behavior of Organic Compounds , 1982 .

[41]  K. Sakaki Solubility of .beta.-carotene in dense carbon dioxide and nitrous oxide from 308 to 323 K and from 9.6 to 30 MPa , 1992 .

[42]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .