A Refined Tableau Calculus with Controlled Blocking for the Description Logic SHOI

The paper presents a tableau calculus with several refinements for reasoning in the description logic \(\mathcal{SHOI}\). The calculus uses non-standard rules for dealing with TBox statements. Whereas in existing tableau approaches a fixed rule is used for dealing with TBox statements, we use a dynamically generated set of refined rules. This approach has become practical because reasoners with flexible sets of rules can be generated with the tableau prover generation prototype MetTel. We also define and investigate variations of the unrestricted blocking mechanism in which equality reasoning is realised by ordered rewriting and the application of the blocking rule is controlled by excluding its application to a fixed, finite set of individual terms. Reasoning with the unique name assumption and excluding ABox individuals from the application of blocking can be seen as two separate instances of the latter. Experiments show the refinements lead to fewer rule applications and improved performance.

[1]  M. Fitting Proof Methods for Modal and Intuitionistic Logics , 1983 .

[2]  Larry Wos,et al.  What Is Automated Reasoning? , 1987, J. Autom. Reason..

[3]  Frank Pfenning,et al.  Logic Programming and Automated Reasoning , 1994, Lecture Notes in Computer Science.

[4]  Alex K. Simpson,et al.  Computational Adequacy in an Elementary Topos , 1998, CSL.

[5]  Ian Horrocks,et al.  A Description Logic with Transitive and Inverse Roles and Role Hierarchies , 1999, J. Log. Comput..

[6]  Ian Horrocks,et al.  Practical Reasoning for Expressive Description Logics , 1999, LPAR.

[7]  Frank Wolter,et al.  Semi-qualitative Reasoning about Distances: A Preliminary Report , 2000, JELIA.

[8]  Franz Baader,et al.  An Overview of Tableau Algorithms for Description Logics , 2001, Stud Logica.

[9]  Ian Horrocks,et al.  A Tableaux Decision Procedure for SHOIQ , 2005, IJCAI.

[10]  Ian Horrocks,et al.  The Even More Irresistible SROIQ , 2006, KR.

[11]  Ian Horrocks,et al.  FaCT++ Description Logic Reasoner: System Description , 2006, IJCAR.

[12]  Patrick Blackburn,et al.  Termination for Hybrid Tableaus , 2007, J. Log. Comput..

[13]  Frank Wolter,et al.  Handbook of Modal Logic , 2007, Studies in logic and practical reasoning.

[14]  Renate A. Schmidt,et al.  Using Tableau to Decide Expressive Description Logics with Role Negation , 2007, ISWC/ASWC.

[15]  I. Horrocks,et al.  A Tableau Decision Procedure for $\mathcal{SHOIQ}$ , 2007, Journal of Automated Reasoning.

[16]  Renate A. Schmidt,et al.  A General Tableau Method for Deciding Description Logics, Modal Logics and Related First-Order Fragments , 2008, IJCAR.

[17]  Renate A. Schmidt,et al.  Automated Synthesis of Tableau Calculi , 2009, TABLEAUX.

[18]  Myriam Lamolle,et al.  Decidability of Description Logics with Transitive Closure of Roles in Concept and Role Inclusion Axioms , 2010, Description Logics.

[19]  Marta Cialdea Mayer,et al.  Nominal Substitution at Work with the Global and Converse Modalities , 2010, Advances in Modal Logic.

[20]  Camilla Schwind,et al.  Tableau Calculi for CSL\mathcal{CSL} over minspaces , 2010, CSL.

[21]  Camilla Schwind,et al.  Tableau calculi for CSL over minspaces , 2010, CSL 2010.

[22]  Sean Bechhofer,et al.  The OWL API: A Java API for OWL ontologies , 2011, Semantic Web.

[23]  Renate A. Schmidt,et al.  An Abstract Tableau Calculus for the Description Logic SHOI Using Unrestricted Blocking and Rewriting , 2012, Description Logics.

[24]  Renate A. Schmidt,et al.  MetTeL2: Towards a prover generation platform , 2012 .

[25]  Renate A. Schmidt,et al.  The Tableau Prover Generator MetTeL2 , 2012, JELIA.

[26]  Renate A. Schmidt,et al.  MetTeL2: Towards a Tableau Prover Generation Platform , 2012, PAAR@IJCAR.

[27]  Samantha Bail,et al.  A Corpus of OWL DL Ontologies , 2013, Description Logics.

[28]  Renate A. Schmidt,et al.  Refinement in the Tableau Synthesis Framework , 2013, ArXiv.

[29]  Renate A. Schmidt,et al.  Using tableau to decide description logics with full role negation and identity , 2012, ACM Trans. Comput. Log..