NURBS with extraordinary points: high-degree, non-uniform, rational subdivision schemes
暂无分享,去创建一个
[1] E. Catmull,et al. Recursively generated B-spline surfaces on arbitrary topological meshes , 1978 .
[2] W. Boehm. Inserting New Knots into B-spline Curves , 1980 .
[3] Richard F. Riesenfeld,et al. A Theoretical Development for the Computer Generation and Display of Piecewise Polynomial Surfaces , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[4] Tom Lyche,et al. Discrete B-splines and subdivision techniques in computer-aided geometric design and computer graphics , 1980 .
[5] Lyle Ramshaw,et al. Blossoms are polar forms , 1989, Comput. Aided Geom. Des..
[6] Zvi Galil,et al. Data structures and algorithms for disjoint set union problems , 1991, CSUR.
[7] M. A. Sabin,et al. Cubic Recursive Division With Bounded Curvature , 1991, Curves and Surfaces.
[8] Sw Sjoerd Rienstra,et al. Thin layer flow along arbitrary curved surfaces , 1995 .
[9] F. Holt. Toward a curvature-continuous stationary subdivision algorithm , 1996 .
[10] U. Reif. A degree estimate for subdivision surfaces of higher regularity , 1996 .
[11] Hartmut Prautzsch,et al. Freeform splines , 1997, Computer Aided Geometric Design.
[12] Jos Stam,et al. Exact evaluation of Catmull-Clark subdivision surfaces at arbitrary parameter values , 1998, SIGGRAPH.
[13] Hartmut Prautzsch,et al. Smoothness of subdivision surfaces at extraordinary points , 1998, Adv. Comput. Math..
[14] Malcolm A. Sabin,et al. Non-uniform recursive subdivision surfaces , 1998, SIGGRAPH.
[15] Tony DeRose,et al. Subdivision surfaces in character animation , 1998, SIGGRAPH.
[16] U. Reif. TURBS—Topologically Unrestricted Rational B-Splines , 1998 .
[17] J. Stam. On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree , 2001 .
[18] G. Farin. Curves and Surfaces for Cagd: A Practical Guide , 2001 .
[19] D. Zorin,et al. A unified framework for primal/dual quadrilateral subdivision schemes , 2001 .
[20] Joe Warren,et al. Subdivision Methods for Geometric Design: A Constructive Approach , 2001 .
[21] Charles T. Loop. Bounded curvature triangle mesh subdivision with the convex hull property , 2002, The Visual Computer.
[22] Joe Warren,et al. Subdivision: Functions as Fractals , 2002 .
[23] Ahmad H. Nasri,et al. T-splines and T-NURCCs , 2003, ACM Trans. Graph..
[24] Neil A. Dodgson,et al. Curvature behaviours at extraordinary points of subdivision surfaces , 2003, Comput. Aided Des..
[25] Leif Kobbelt,et al. Subdivision scheme tuning around extraordinary vertices , 2004, Comput. Aided Geom. Des..
[26] Jörg Peters,et al. Shape characterization of subdivision surfaces--case studies , 2004, Comput. Aided Geom. Des..
[27] Weiyin Ma,et al. Subdivision surfaces for CAD - an overview , 2005, Comput. Aided Des..
[28] Georg Umlauf,et al. Loop subdivision with curvature control , 2006, SGP '06.
[29] Dieter W. Fellner,et al. Extended subdivision surfaces: Building a bridge between NURBS and Catmull-Clark surfaces , 2006, TOGS.
[30] Neil A. Dodgson,et al. Tuning Subdivision by Minimising Gaussian Curvature Variation Near Extraordinary Vertices , 2006, Comput. Graph. Forum.
[31] Adi Levin. Modified subdivision surfaces with continuous curvature , 2006, SIGGRAPH 2006.
[32] Jörg Peters,et al. Subdivision Surfaces , 2002, Handbook of Computer Aided Geometric Design.
[33] Neil A. Dodgson,et al. Numerical Checking of C1 for Arbitrary Degree Quadrilateral Subdivision Schemes , 2009, IMA Conference on the Mathematics of Surfaces.
[34] Neil A. Dodgson,et al. Selective knot insertion for symmetric, non-uniform refine and smooth B-spline subdivision , 2009, Comput. Aided Geom. Des..
[35] Ron Goldman,et al. Non-uniform subdivision for B-splines of arbitrary degree , 2009, Comput. Aided Geom. Des..