A four-wing hyper-chaotic attractor generated from a 4-D memristive system with a line equilibrium

A new hyper-chaotic system is presented in this paper by adding a smooth flux-controlled memristor and a cross-product item into a three-dimensional autonomous chaotic system. It is exciting that this new memristive system can show a four-wing hyper-chaotic attractor with a line equilibrium. The dynamical behaviors of the proposed system are analyzed by Lyapunov exponents, bifurcation diagram and Poincaré maps. Then, by using the topological horseshoe theory and computer-assisted proof, the existence of hyperchaos in the system is verified theoretically. Finally, an electronic circuit is designed to implement the hyper-chaotic memristive system.

[1]  GUANRONG CHEN,et al.  Can a Three-Dimensional Smooth Autonomous Quadratic Chaotic System Generate a Single Four-scroll Attractor? , 2004, Int. J. Bifurc. Chaos.

[2]  Lin Teng,et al.  Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial , 2014, Nonlinear Dynamics.

[3]  Guanrong Chen,et al.  A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system , 2008 .

[4]  C. Robinson Dynamical Systems: Stability, Symbolic Dynamics, and Chaos , 1994 .

[5]  Giuseppe Grassi,et al.  Multi-wing hyperchaotic attractors from coupled Lorenz systems , 2009 .

[6]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[7]  O. Rössler An equation for hyperchaos , 1979 .

[8]  Bharathwaj Muthuswamy,et al.  Implementing Memristor Based Chaotic Circuits , 2010, Int. J. Bifurc. Chaos.

[9]  L. Dieci,et al.  Computation of a few Lyapunov exponents for continuous and discrete dynamical systems , 1995 .

[10]  R. Toral,et al.  Analysis and characterization of the hyperchaos generated by a semiconductor laser subject to a delayed feedback loop , 2005, IEEE Journal of Quantum Electronics.

[11]  Xiao-Song Yang,et al.  Hyperchaotic set in continuous chaos-hyperchaos transition , 2014, Communications in nonlinear science & numerical simulation.

[12]  Victor Sreeram,et al.  Controlling Chaos in a Memristor Based Circuit Using a Twin-T Notch Filter , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[13]  An-Pei Wang,et al.  Controlling hyperchaos of the Rossler system , 1999 .

[14]  S. Mascolo,et al.  Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal , 1997 .

[15]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[16]  P. Müller Calculation of Lyapunov exponents for dynamic systems with discontinuities , 1995 .

[17]  L. Chua,et al.  HYPERCHAOTIC ATTRACTORS OF UNIDIRECTIONALLY-COUPLED CHUA’S CIRCUITS , 1994 .

[18]  Guoyuan Qi,et al.  A four-wing hyper-chaotic attractor and transient chaos generated from a new 4-D quadratic autonomous system , 2010 .

[19]  L. Chua Memristor-The missing circuit element , 1971 .

[20]  Xiao-Song Yang,et al.  Existence of Horseshoe in a Foodweb Model , 2004, Int. J. Bifurc. Chaos.

[21]  W. T. Rhodes,et al.  Communicating with hyperchaos: The dynamics of a DNLF emitter and recovery of transmitted information , 2003 .

[22]  Kapitaniak,et al.  Chaos-hyperchaos transition , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  S Yanchuk,et al.  Symmetry-increasing bifurcation as a predictor of a chaos-hyperchaos transition in coupled systems. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  Tomasz Kapitaniak,et al.  Chaos-hyperchaos transition in coupled Rössler systems , 2001 .

[25]  Leon O. Chua,et al.  Simplest Chaotic Circuit , 2010, Int. J. Bifurc. Chaos.

[26]  Giuseppe Grassi,et al.  Fractional-Order Chaos: a Novel Four-Wing Attractor in Coupled Lorenz Systems , 2009, Int. J. Bifurc. Chaos.

[27]  Dongsheng Yu,et al.  Hyperchaos in a memristor-Based Modified Canonical Chua's Circuit , 2012, Int. J. Bifurc. Chaos.

[28]  Giuseppe Grassi,et al.  On the simplest fractional-order memristor-based chaotic system , 2012 .

[29]  Giuseppe Grassi,et al.  New 3D-scroll attractors in hyperchaotic Chua's Circuits Forming a Ring , 2003, Int. J. Bifurc. Chaos.

[30]  Bradley J. Bazuin,et al.  Generation of a Four-Wing Chaotic Attractor by Two Weakly-Coupled Lorenz Systems , 2008, Int. J. Bifurc. Chaos.

[31]  Ivo Petrás,et al.  Fractional-Order Memristor-Based Chua's Circuit , 2010, IEEE Transactions on Circuits and Systems II: Express Briefs.

[32]  Xu Jianping,et al.  Dynamical analysis of memristor chaotic oscillator , 2010 .

[33]  Qingdu Li,et al.  On hyperchaos in a small memristive neural network , 2014 .

[34]  Xiao-Song Yang,et al.  Horseshoes in modified Chen’s attractors , 2005 .

[35]  Guanrong Chen,et al.  Analysis and circuit implementation of a new 4D chaotic system , 2006 .

[36]  Xiao-Song Yang,et al.  Horseshoes in piecewise continuous maps , 2004 .

[37]  Å. Björck Numerics of Gram-Schmidt orthogonalization , 1994 .