Hydrogen evolution in acid solution at Pd electrodeposited onto Ti2AlC

[1]  J. Kovač,et al.  Ru layers electrodeposited onto highly stable Ti2AlC substrates as cathodes for hydrogen evolution in sulfuric acid solutions , 2016 .

[2]  S. Barman,et al.  Palladium Nanoparticle–Graphitic Carbon Nitride Porous Synergistic Catalyst for Hydrogen Evolution/Oxidation Reactions over a Broad Range of pH and Correlation of Its Catalytic Activity with Measured Hydrogen Binding Energy , 2016 .

[3]  G. Proust,et al.  Room temperature stress-strain hysteresis in Ti2AlC revisited , 2016 .

[4]  A. Abdolmaleki,et al.  Electrodeposition and characterization of palladium nanostructures on stainless steel and application as hydrogen sensor , 2015 .

[5]  Shengli Zhu,et al.  Pd coated MoS2 nanoflowers for highly efficient hydrogen evolution reaction under irradiation , 2015 .

[6]  B. Pierożyński,et al.  Hydrogen evolution reaction at Pd-modified carbon fibre in 0.1 M NaOH , 2015 .

[7]  Hubert A. Gasteiger,et al.  Hydrogen Oxidation and Evolution Reaction Kinetics on Carbon Supported Pt, Ir, Rh, and Pd Electrocatalysts in Acidic Media , 2015 .

[8]  Y. Miao,et al.  Synthesis of Ultrafine Pt/Pd Bimetallic Nanoparticles and Their Decoration on MWCNTs for Hydrogen Evolution , 2015 .

[9]  M. C. Aguirre,et al.  Pd Nucleation and Growth Mechanism Deposited on Different Substrates , 2015 .

[10]  V. Jović,et al.  Service life test of the NiSn coatings as cathodes for hydrogen evolution in industrial chlor-alkali electrolysis , 2014 .

[11]  B. D. Assresahegn,et al.  Tuning the Initial Electronucleation Mechanism of Palladium on Glassy Carbon Electrode , 2014 .

[12]  B. Fang,et al.  Mechanism for nucleation and growth of electrochemical deposition of palladium(II) on a platinum electrode in hydrochloric acid solution , 2014, Science China Chemistry.

[13]  V. Radmilović,et al.  Kinetics of the hydrogen evolution reaction on Ni-(Ebonex-supported Ru) composite coatings in alkaline solution , 2013 .

[14]  I. Danaee 2D–3D nucleation and growth of palladium on graphite electrode , 2013 .

[15]  V. Parmon,et al.  Hydrogen electrooxidation on PdAu supported nanoparticles: An experimental RDE and kinetic modeling study , 2013 .

[16]  I. Karaman,et al.  Processing and characterization of porous Ti2AlC with controlled porosity and pore size , 2012 .

[17]  A. Muliana,et al.  Thermal and mechanical properties of Al/Al2O3 composites at elevated temperatures , 2012 .

[18]  U. Stimming,et al.  Theory meets experiment: Electrocatalysis of hydrogen oxidation/evolution at Pd–Au nanostructures , 2011 .

[19]  Y. Pluntke,et al.  Hydrogen Evolution Electrocatalysis on AgPd(111) Alloys , 2011 .

[20]  P. S. Ruvinsky,et al.  On the enhanced electrocatalytic activity of Pd overlayers on carbon-supported gold particles in hydrogen electrooxidation. , 2008, Physical chemistry chemical physics : PCCP.

[21]  M. Łukaszewski,et al.  Electrochemical behaviour of palladium electrode: Oxidation, electrodissolution and ionic adsorption , 2008 .

[22]  I. Ciani,et al.  Scanning Electrochemical Microscopy of Redox-Mediated Hydrogen Evolution Catalyzed by Two-Dimensional Assemblies of Palladium Nanoparticles , 2008 .

[23]  S. Grigoriev,et al.  Evaluation of carbon-supported Pt and Pd nanoparticles for the hydrogen evolution reaction in PEM water electrolysers , 2008 .

[24]  V. Diculescu,et al.  Palladium nanoparticles and nanowires deposited electrochemically: AFM and electrochemical characterization , 2007 .

[25]  J. Nørskov,et al.  Hydrogen evolution over bimetallic systems: understanding the trends. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[26]  J. Owen,et al.  In situ time resolved studies of hydride and deuteride formation in Pd/C electrodes via energy dispersive X-ray absorption spectroscopy , 2005 .

[27]  A. Lasia,et al.  Investigation of Hydrogen Adsorption and Absorption in Palladium Thin Films II. Cyclic Voltammetry , 2004 .

[28]  N. Marković,et al.  Electrooxidation of H2, CO and H2/CO on well-characterized Au(1 1 1)-Pd surface alloys , 2003 .

[29]  K. Uosaki,et al.  Mechanism for nucleation and growth of electrochemical palladium deposition on an Au(111) electrode , 2002 .

[30]  Michel W. Barsoum,et al.  The MAX Phases: Unique New Carbide and Nitride Materials , 2001, American Scientist.

[31]  K.H.J. Buschow,et al.  Encyclopedia of Materials: Science and Technology , 2004 .

[32]  Michel W. Barsoum,et al.  The MN+1AXN phases: A new class of solids , 2000 .

[33]  K. Uosaki,et al.  Epitaxial growth of a palladium layer on an Au(100) electrode , 1999 .

[34]  K. Uosaki,et al.  ELECTROCHEMICAL DEPOSITION OF PALLADIUM ON AN AU(111) ELECTRODE : EFFECTS OF ADSORBED HYDROGEN FOR A GROWTH MODE , 1999 .

[35]  I. González,et al.  On the Theory of the Potentiostatic Current Transient for Diffusion‐Controlled Three‐Dimensional Electrocrystallization Processes , 1999 .

[36]  S. Pyun,et al.  Analysis of the compressive and tensile stresses generation/relaxation during hydrogen ingress into and egress from Pd foil electrode , 1999 .

[37]  H. Hahn,et al.  An investigation of hydrogen diffusion in nanocrystalline Pd by neutron spectroscopy , 1997 .

[38]  A. Jannakoudakis,et al.  Palladium deposition on activated carbon fibre supports and electrocatalytic activity of the modified electrodes towards the hydrogen evolution reaction , 1997 .

[39]  M. Barsoum,et al.  Synthesis and Characterization of a Remarkable Ceramic: Ti3SiC2 , 1996 .

[40]  M. Sluyters-Rehbach Impedances of electrochemical systems: Terminology, nomenclature and representation - Part I: Cells with metal electrodes and liquid solutions (IUPAC Recommendations 1994) , 1994 .

[41]  R. Marassi,et al.  The absorption of hydrogen and deuterium in thin palladium electrodes - Part I: acidic solutions , 1992 .

[42]  Masatoshi Suzuki,et al.  Electrochemical properties of ultra-fine palladium particles for adsorption and absorption of hydrogen in an aqueous HClO4 solution , 1991 .

[43]  B. Conway,et al.  ac Impedance of Faradaic reactions involving electrosorbed intermediates—I. Kinetic theory , 1987 .

[44]  M. Sluyters-Rehbach,et al.  The analysis of electrode impedances complicated by the presence of a constant phase element , 1984 .

[45]  B. Scharifker,et al.  Theoretical and experimental studies of multiple nucleation , 1983 .

[46]  B. Scharifker,et al.  Electrochemical nucleation: Part I. General considerations , 1982 .

[47]  Allen J. Bard,et al.  Electrochemical Methods: Fundamentals and Applications , 1980 .

[48]  M. Breiter Dissolution and adsorption of hydrogen at smooth Pd wires at potentials of the alpha phase in sulfuric acid solution , 1977 .

[49]  D. Schiffrin,et al.  Electrochemical nucleation from molten salts—I. Diffusion controlled electrodeposition of silver from alkali molten nitrates , 1974 .

[50]  R. Armstrong,et al.  Impedance plane display of a reaction with an adsorbed intermediate , 1972 .

[51]  S. Trasatti Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions , 1972 .

[52]  D. Rand,et al.  The nature of adsorbed oxygen on rhodium, palladium and gold electrodes , 1971 .

[53]  R. Parsons The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen , 1958 .

[54]  J. Bockris,et al.  Hydrogen Evolution Reaction on Copper, Gold, Molybdenum, Palladium, Rhodium, and Iron Mechanism and Measurement Technique under High Purity Conditions , 1957 .

[55]  J. Bockris,et al.  The kinetics of the hydrogen evolution reaction at high current densities , 1952 .