Circuit simulation via matrix exponential method for stiffness handling and parallel processing

We propose an advanced matrix exponential method (MEXP) to handle the transient simulation of stiff circuits and enable parallel simulation. We analyze the rapid decaying of fast transition elements in Krylov subspace approximation of matrix exponential and leverage such scaling effect to leap larger steps in the later stage of time marching. Moreover, matrix-vector multiplication and restarting scheme in our method provide better scalability and parallelizability than implicit methods. The performance of ordinary MEXP can be improved up to 4.8 times for stiff cases, and the parallel implementation leads to another 11 times speedup. Our approach is demonstrated to be a viable tool for ultra-large circuit simulations (with 1.6M ~ 12M nodes) that are not feasible with existing implicit methods.

[1]  N. Higham The Scaling and Squaring Method for the Matrix Exponential Revisited , 2005, SIAM J. Matrix Anal. Appl..

[2]  Oliver G. Ernst,et al.  A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions , 2006, SIAM J. Numer. Anal..

[3]  Quan Chen,et al.  Circuit simulation using matrix exponential method , 2011, 2011 9th IEEE International Conference on ASIC.

[4]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[5]  Rajesh Bordawekar,et al.  Optimizing Sparse Matrix-Vector Multiplication on GPUs , 2009 .

[6]  Jack J. Dongarra,et al.  Accelerating GPU Kernels for Dense Linear Algebra , 2010, VECPAR.

[7]  Stefan Güttel,et al.  Deflated Restarting for Matrix Functions , 2011, SIAM J. Matrix Anal. Appl..

[8]  M. Eiermann,et al.  Implementation of a restarted Krylov subspace method for the evaluation of matrix functions , 2008 .

[9]  Quan Chen,et al.  A Practical Regularization Technique for Modified Nodal Analysis in Large-Scale Time-Domain Circuit Simulation , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[10]  Quan Chen,et al.  Time-Domain Analysis of Large-Scale Circuits by Matrix Exponential Method With Adaptive Control , 2012, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[11]  Leon O. Chua,et al.  Computer-Aided Analysis Of Electronic Circuits , 1975 .

[12]  Timothy A. Davis,et al.  Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.

[13]  Peng Li,et al.  Parallel Circuit Simulation: A Historical Perspective and Recent Developments , 2012, Found. Trends Electron. Des. Autom..

[14]  Ronald A. Rohrer,et al.  Event driven adaptively controlled explicit simulation of integrated circuits , 1993, ICCAD.

[15]  Qing Nie,et al.  Efficient semi-implicit schemes for stiff systems , 2006, J. Comput. Phys..

[16]  Sani R. Nassif,et al.  MAPS: multi-algorithm parallel circuit simulation , 2008, ICCAD 2008.

[17]  Wei Dong,et al.  Parallelizable stable explicit numerical integration for efficient circuit simulation , 2009, 2009 46th ACM/IEEE Design Automation Conference.

[18]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[19]  Awad H. Al-Mohy,et al.  Computing the Action of the Matrix Exponential, with an Application to Exponential Integrators , 2011, SIAM J. Sci. Comput..

[20]  Rajesh Bordawekar,et al.  Optimizing Sparse Matrix-Vector Multiplication on GPUs using Compile-time and Run-time Strategies , 2008 .

[21]  M.L. Liou,et al.  Computer-aided analysis of electronic circuits: Algorithms and computational techniques , 1977, Proceedings of the IEEE.

[22]  Michael Garland,et al.  Implementing sparse matrix-vector multiplication on throughput-oriented processors , 2009, Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis.

[23]  Jitse Niesen,et al.  Algorithm 919: A Krylov Subspace Algorithm for Evaluating the ϕ-Functions Appearing in Exponential Integrators , 2009, TOMS.