Motion and shape of a viscoelastic drop falling through a viscous fluid

The steady shape of a drop of dilute polymer solution falling through a quiescent viscous Newtonian fluid is considered. Experimentally, we find that an immiscible drop of 0.16% xanthan gum in 80:20 glycerol/water falling through 9.8 P polydimethylsiloxane oil may exhibit a stable dimple at its trailing edge. At higher volumes the dimple extends far into the interior of the drop, and pinches off via a Rayleigh-type instability, injecting oil droplets into the polymer drop. At even larger volumes, a toroidal shape develops. We show that the dimpled shape can be reproduced mathematically with axisymmetric solutions for Stokes flow past a non-Newtonian drop, using the constitutive equation for a Simple Fluid of Order Three.

[1]  Geoffrey Ingram Taylor,et al.  The formation of emulsions in definable fields of flow , 1934 .

[2]  Slow flow of a non‐newtonian fluid past a droplet , 1971 .

[3]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[4]  Stokes Flow past a Reiner-Rivlin Liquid Sphere , 1989 .

[5]  H. Barnes Rheological phenomena in focus , 1994 .

[6]  A. McHugh,et al.  Viscoelastic fluid flow past a submerged spheroidal body , 1985 .

[7]  B. Vergnes,et al.  Experimental characterization of sharkskin in polyethylenes , 1997 .

[8]  K. Shariff,et al.  Ring bubbles of dolphins. , 1996, Scientific American.

[9]  B. Caswell,et al.  The creeping motion of a non-Newtonian fluid past a sphere , 1962, Journal of Fluid Mechanics.

[10]  A. K. Agrawal,et al.  Shape of liquid drops moving in liquid media , 1966 .

[11]  L. G. Leal,et al.  An experimental investigation on the stability of viscous drops translating through a quiescent fluid , 1990 .

[12]  A note on the slow motion of a bubble in a viscoelastic liquid , 1980 .

[13]  D. Joseph,et al.  A two-dimensional cusp at the trailing edge of an air bubble rising in a viscoelastic liquid , 1995, Journal of Fluid Mechanics.

[14]  H. K. Moffatt,et al.  Free-surface cusps associated with flow at low Reynolds number , 1992, Journal of Fluid Mechanics.

[15]  L. G. Leal,et al.  The stability of drop shapes for translation at zero Reynolds number through a quiescent fluid , 1989 .

[16]  R. Larson Instabilities in viscoelastic flows , 1992 .

[17]  J. M. Davidson,et al.  The initial motion of a gas bubble formed in an inviscid liquid , 1963, Journal of Fluid Mechanics.

[18]  K. B. Mathur,et al.  Distortion of Fluid Drops in the Stokesian Region , 1957, Nature.

[19]  Walter Meile,et al.  Coalescence, torus formation and breakup of sedimenting drops: experiments and computer simulations , 2001, Journal of Fluid Mechanics.

[20]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[21]  G. Crapper,et al.  An exact solution for progressive capillary waves of arbitrary amplitude , 1957, Journal of Fluid Mechanics.

[22]  R. Shinnar,et al.  Breakup of a laminar capillary jet of a viscoelastic fluid , 1969, Journal of Fluid Mechanics.

[23]  Daniel D. Joseph,et al.  Vortex rings of one fluid in another in free fall , 1992 .

[24]  C. Pozrikidis,et al.  The instability of a moving viscous drop , 1990, Journal of Fluid Mechanics.

[25]  Andreas Acrivos,et al.  The formation and expansion of a toroidal drop moving in a viscous fluid , 1984 .

[26]  R. Bird Dynamics of Polymeric Liquids , 1977 .

[27]  T. Fort,et al.  Pendant Drop Technique for Measuring Liquid Boundary Tensions , 1979 .

[28]  Andreas Acrivos,et al.  On the deformation and drag of a falling viscous drop at low Reynolds number , 1964, Journal of Fluid Mechanics.

[29]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[30]  Christopher W. Macosko,et al.  Rheology of Xanthan Gum , 1978 .

[31]  Howard A. Stone,et al.  Dynamics of Drop Deformation and Breakup in Viscous Fluids , 1994 .

[32]  R. Tanner,et al.  THE SLOW FLOW OF A VISCO-ELASTIC LIQUID PAST A SPHERE , 1961 .

[33]  Daniel D. Joseph,et al.  The free surface on a liquid between cylinders rotating at different speeds part II , 1973 .

[34]  L. G. Leal,et al.  Deformation and breakup of viscoelastic drops in planar extensional flows , 1991 .

[35]  M. Longuet-Higgins Limiting forms for capillary-gravity waves , 1988, Journal of Fluid Mechanics.

[36]  J. Eggers Nonlinear dynamics and breakup of free-surface flows , 1997 .

[37]  D. Joseph,et al.  The free surface on a liquid between cylinders rotating at different speeds part I , 1973 .

[38]  Eric S. G. Shaq PURELY ELASTIC INSTABILITIES IN VISCOMETRIC FLOWS , 1996 .

[39]  L. Payne,et al.  The Stokes flow problem for a class of axially symmetric bodies , 1960, Journal of Fluid Mechanics.

[40]  O. Hassager,et al.  Negative wake behind bubbles in non-newtonian liquids , 1979, Nature.

[41]  M. Brenner,et al.  A Cascade of Structure in a Drop Falling from a Faucet , 1994, Science.