Towards Unstructured Mesh Generation Using the Inverse Poisson Problem

A novel approach to unstructured quadrilateral mesh generation for planar domains is presented. Away from irregular vertices, the resulting meshes have the properties of nearly conformal grids. The technique is based on a theoretical relation between the present problem, and the inverse Poisson (IP) problem with point sources. An IP algorithm is described, which constructs a point-source distribution, whose sources correspond to the irregular vertices of the mesh. Both the background theory and the IP algorithm address the global nature of the mesh generation problem. The IP algorithm is incorporated in a complete mesh generation scheme, which also includes an algorithm for creating the final mesh. Example results are presented and discussed.

[1]  Takashi Ohe,et al.  A precise estimation method for locations in an inverse logarithmic potential problem for point mass models , 1994 .

[2]  Kenji Shimada,et al.  Quadrilateral Meshing with Directionality Control through the Packing of Square Cells , 1998, IMR.

[3]  A. E. Badia,et al.  An Inverse Source Problem in Potential Analysis , 2000 .

[4]  B. Vallet,et al.  N-Symmetry Direction Fields on Surfaces of Arbitrary Genus , 2006 .

[5]  Sun-Yung Alice Chang,et al.  Non-Linear Elliptic Equations in Conformal Geometry , 2004 .

[6]  M. O. Katanaev,et al.  Geometric theory of defects , 2004 .

[7]  Peter Schröder,et al.  Discrete conformal mappings via circle patterns , 2005, TOGS.

[8]  Thierry Aubin,et al.  Some Nonlinear Problems in Riemannian Geometry , 1998 .

[9]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[10]  G. Pólya,et al.  Functions of One Complex Variable , 1998 .

[11]  Marco Attene,et al.  Recent Advances in Remeshing of Surfaces , 2008, Shape Analysis and Structuring.

[12]  Steven J. Owen,et al.  A Survey of Unstructured Mesh Generation Technology , 1998, IMR.

[13]  D. Zidarov,et al.  Inverse Gravimetric Problem in Geoprospecting and Geodesy , 1990 .

[14]  S. Axler,et al.  Harmonic Function Theory , 1992 .

[15]  J. Conway Functions of One Complex Variable II , 1978 .

[16]  J. Conway,et al.  Functions of a Complex Variable , 1964 .

[17]  S. Yau,et al.  Global conformal surface parameterization , 2003 .

[18]  S. H. Lo,et al.  Generating quadrilateral elements on plane and over curved surfaces , 1989 .

[19]  Graeme Fairweather,et al.  The method of fundamental solutions for elliptic boundary value problems , 1998, Adv. Comput. Math..

[20]  A. Ioannides,et al.  Continuous probabilistic solutions to the biomagnetic inverse problem , 1990 .

[21]  George Weiss,et al.  Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations , 1958 .

[22]  Peter Rex Johnston,et al.  Computational Inverse Problems in Electrocardiography , 2001 .

[23]  J. Leblond,et al.  Recovery of pointwise sources or small inclusions in 2D domains and rational approximation , 2005 .

[24]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[25]  Guy Bunin,et al.  A continuum theory for unstructured mesh generation in two dimensions , 2006, Comput. Aided Geom. Des..

[26]  Konrad Polthier,et al.  QuadCover ‐ Surface Parameterization using Branched Coverings , 2007, Comput. Graph. Forum.

[27]  Pierre Alliez,et al.  Periodic global parameterization , 2006, TOGS.

[28]  Shigeru Ando,et al.  A projective method for an inverse source problem of the Poisson equation , 2003 .