RNA as a drug target.

In the antiviral and antibacterial area, increasing drug resistance means that there is an ever growing need for novel approaches towards structures and mechanisms which avoid the current problems. The huge increase in high resolution structural data is set to make a dramatic impact on targeting RNA as a drug target. The examples of the RNA binding antibiotics, particularly, the totally synthetic oxazolidinones, should help persuade the skceptics that clinically useful, selective drugs can be obtained from targeting RNA directly.

[1]  C. Prescott,et al.  RNA as a drug target. , 1997, Chemistry & biology.

[2]  J. Puglisi,et al.  Conformation of the TAR RNA-arginine complex by NMR spectroscopy. , 1992, Science.

[3]  R. Brimacombe,et al.  The ribosomal environment of tRNA: crosslinks to rRNA from positions 8 and 20:1 in the central fold of tRNA located at the A, P, or E site. , 1995, RNA: A publication of the RNA Society.

[4]  Ecker,et al.  RNA as a small-molecule drug target: doubling the value of genomics. , 1999, Drug discovery today.

[5]  R. Conradi,et al.  Piperazinyl oxazolidinone antibacterial agents containing a pyridine, diazene, or triazene heteroaromatic ring. , 1998, Journal of medicinal chemistry.

[6]  H. Noller,et al.  Chloramphenicol, erythromycin, carbomycin and vernamycin B protect overlapping sites in the peptidyl transferase region of 23S ribosomal RNA. , 1987, Biochimie.

[7]  H. Noller,et al.  Ribosomes and translation. , 1997, Annual review of biochemistry.

[8]  Poul Nissen,et al.  Placement of protein and RNA structures into a 5 Å-resolution map of the 50S ribosomal subunit , 1999, Nature.

[9]  W. Wintermeyer,et al.  Effect of Escherichia coli initiation factors on the kinetics of N-Acphe-tRNAPhe binding to 30S ribosomal subunits. A fluorescence stopped-flow study. , 1983, Biochemistry.

[10]  E Westhof,et al.  RNA as a drug target: chemical, modelling, and evolutionary tools. , 1998, Current opinion in biotechnology.

[11]  H. Noller,et al.  tRNA‐rRNA interactions and peptidyl transferase , 1993, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[12]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[13]  J. Shine,et al.  Terminal-sequence analysis of bacterial ribosomal RNA. Correlation between the 3'-terminal-polypyrimidine sequence of 16-S RNA and translational specificity of the ribosome. , 1975, European journal of biochemistry.

[14]  E Westhof,et al.  A potential RNA drug target in the hepatitis C virus internal ribosomal entry site. , 2000, RNA.

[15]  Michael R. Green,et al.  Small molecules that selectively block RNA binding of HIV-1 rev protein inhibit rev function and viral production , 1993, Cell.

[16]  D. Otto,et al.  Erythromycin, carbomycin, and spiramycin inhibit protein synthesis by stimulating the dissociation of peptidyl-tRNA from ribosomes , 1982, Antimicrobial Agents and Chemotherapy.

[17]  T. Pape,et al.  Conformational switch in the decoding region of 16S rRNA during aminoacyl-tRNA selection on the ribosome , 2000, Nature Structural Biology.

[18]  P. S. Ho,et al.  Circular dichroism and molecular modeling yield a structure for the complex of human immunodeficiency virus type 1 trans-activation response RNA and the binding region of Tat, the trans-acting transcriptional activator. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[19]  M. Malim,et al.  Identification of a high-affinity RNA-binding site for the human immunodeficiency virus type 1 Rev protein , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[20]  J Frank,et al.  Movement of the decoding region of the 16 S ribosomal RNA accompanies tRNA translocation. , 2000, Journal of molecular biology.

[21]  R. Clark,et al.  Synthesis of 2-fluoro-6-O-propargyl-11,12-carbamate ketolides. A novel class of antibiotics. , 2000, Organic letters.

[22]  M. Rodnina,et al.  Energetic contribution of tRNA hybrid state formation to translocation catalysis on the ribosome , 2000, Nature Structural Biology.

[23]  R P May,et al.  Inter‐protein distances within the large subunit from Escherichia coli ribosomes. , 1992, The EMBO journal.

[24]  J. Puglisi,et al.  Role of RNA structure in arginine recognition of TAR RNA. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. Rodnina,et al.  Thiostrepton inhibits the turnover but not the GTPase of elongation factor G on the ribosome. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[26]  D. Lazinski,et al.  Sequence-specific recognition of RNA hairpins by bacteriophage antiterminators requires a conserved arginine-rich motif , 1989, Cell.

[27]  H. Noller,et al.  Ribosome-catalyzed peptide-bond formation with an A-site substrate covalently linked to 23S ribosomal RNA. , 1998, Science.

[28]  B. Cullen,et al.  Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteins , 1995, Cell.

[29]  V. Ramakrishnan,et al.  Structure of a bacterial 30S ribosomal subunit at 5.5 Å resolution , 1999, Nature.

[30]  J. Hauber,et al.  Characterization of HIV-1 REV protein: binding stoichiometry and minimal RNA substrate. , 1991, Nucleic acids research.

[31]  M. Garcia-Blanco,et al.  Unusual structure of the human immunodeficiency virus type 1 trans-activation response element , 1992, Journal of virology.

[32]  M. Rodnina,et al.  Role of domains 4 and 5 in elongation factor G functions on the ribosome. , 2000, Journal of molecular biology.

[33]  I. Chopra,et al.  Tetracyclines, molecular and clinical aspects. , 1992, The Journal of antimicrobial chemotherapy.

[34]  H. Neu,et al.  The Crisis in Antibiotic Resistance , 1992, Science.

[35]  J. Frank,et al.  Three-dimensional cryoelectron microscopy of ribosomes. , 2000, Methods in enzymology.

[36]  H. Olsen,et al.  Interaction of the human immunodeficiency virus type 1 Rev protein with a structured region in env mRNA is dependent on multimer formation mediated through a basic stretch of amino acids. , 1990, Genes & development.

[37]  Batey,et al.  Tertiary Motifs in RNA Structure and Folding. , 1999, Angewandte Chemie.

[38]  R. Garrett,et al.  Peptidyl transferase antibiotics perturb the relative positioning of the 3'-terminal adenosine of P/P'-site-bound tRNA and 23S rRNA in the ribosome. , 1999, RNA.

[39]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[40]  A. Bonnefoy,et al.  Synthesis and antibacterial activity of HMR 3647 a new ketolide highly potent against erythromycin-resistant and susceptible pathogens. , 1999, Bioorganic & medicinal chemistry letters.

[41]  H. Noller,et al.  Mutations at nucleotides G2251 and U2585 of 23 S rRNA perturb the peptidyl transferase center of the ribosome. , 1997, Journal of molecular biology.

[42]  P. Fernandes,et al.  Comparative in vitro activities of new 14-, 15-, and 16-membered macrolides , 1988, Antimicrobial Agents and Chemotherapy.

[43]  Ernest Frederick Gale,et al.  The Molecular basis of antibiotic action , 1972 .

[44]  A E Dahlberg,et al.  A conformational switch in Escherichia coli 16S ribosomal RNA during decoding of messenger RNA. , 1997, Science.

[45]  R. Garrett,et al.  A spontaneous point mutation in the single 23S rRNA gene of the thermophilic arachaeon Sulfolobus acidocaldarius confers multiple drug resistance , 1994, Journal of bacteriology.

[46]  M. Heel,et al.  Unveiling ribosomal structures: the final phases. , 2000 .

[47]  B. Epe,et al.  Competition between tetracycline and tRNA at both P and A sites of the ribosome of Escherichia coli , 1987, FEBS letters.

[48]  M. Rodnina,et al.  Ribosomal RNA is the target for oxazolidinones, a novel class of translational inhibitors. , 1999, RNA.

[49]  T. Klimkait,et al.  A new class of HIV-1 Tat antagonist acting through Tat-TAR inhibition. , 1998, Biochemistry.

[50]  H. Noller,et al.  A conserved secondary structural motif in 23S rRNA defines the site of interaction of amicetin, a universal inhibitor of peptide bond formation. , 1994, The EMBO journal.

[51]  A. Barta,et al.  [24] Photoaffinity labeling of peptidyltransferase , 1988 .

[52]  M. Delaforge,et al.  Conformational analysis of ketolide, conformations of RU 004 in solution and bound to bacterial ribosomes. , 1998, Journal of medicinal chemistry.

[53]  J. McCutcheon,et al.  A Detailed View of a Ribosomal Active Site The Structure of the L11–RNA Complex , 1999, Cell.

[54]  J. Thompson,et al.  Concerning the mode of action of micrococcin upon bacterial protein synthesis. , 1981, European journal of biochemistry.

[55]  Y. Tor RNA and the Small Molecule World. , 1999, Angewandte Chemie.

[56]  C. Bailly,et al.  Binding of Hoechst 33258 to the TAR RNA of HIV-1. Recognition of a pyrimidine bulge-dependent structure. , 1997, Nucleic acids research.

[57]  Ganoza Mc Polypeptide chain termination in cell-free extracts of E. coli. , 1966 .

[58]  D. Patel,et al.  Stitching together RNA tertiary architectures. , 1999, Journal of molecular biology.

[59]  A. E. Herner,et al.  Inhibition by pactamycin of the initiation of protein synthesis. Effect on the 30S ribosomal subunit. , 1969, Biochemistry.

[60]  A. Ferré-D’Amaré,et al.  RNA folds: insights from recent crystal structures. , 1999, Annual review of biophysics and biomolecular structure.

[61]  Atta-ur- Rahman,et al.  Studies in natural products chemistry , 1988 .

[62]  P. Moore,et al.  Structural motifs in RNA. , 1999, Annual review of biochemistry.

[63]  L. H. Hansen,et al.  The macrolide–ketolide antibiotic binding site is formed by structures in domains II and V of 23S ribosomal RNA , 1999, Molecular microbiology.

[64]  Harry F. Noller,et al.  Interaction of antibiotics with functional sites in 16S ribosomal RNA , 1987, Nature.

[65]  V. Ramakrishnan,et al.  The Structural Basis for the Action of the Antibiotics Tetracycline, Pactamycin, and Hygromycin B on the 30S Ribosomal Subunit , 2000, Cell.

[66]  S. Yerly,et al.  Transmission of antiretroviral-drug-resistant HIV-1 variants , 1999, The Lancet.

[67]  H. Noller,et al.  Interaction of antibiotics with A‐ and P‐site‐specific bases in 16S ribosomal RNA. , 1991, The EMBO journal.

[68]  P. Appelbaum,et al.  Antimicrobial resistance in Streptococcus pneumoniae: an overview. , 1992, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[69]  J. Karn,et al.  An inhibitor of the Tat/TAR RNA interaction that effectively suppresses HIV-1 replication. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[70]  G. F. Joyce,et al.  Direct observation of aminoglycoside-RNA interactions by surface plasmon resonance. , 1997, Journal of the American Chemical Society.

[71]  Barrett Jf Linezolid Pharmacia Corp. , 2000 .

[72]  H. Egger,et al.  New pleuromutilin derivatives with enhanced antimicrobial activity.II.Structure-activity correlations. , 1976, The Journal of antibiotics.

[73]  E. Lattman,et al.  Crystal structure of a conserved ribosomal protein-RNA complex. , 1999, Science.

[74]  C. Bailly,et al.  A heterocyclic inhibitor of the REV-RRE complex binds to RRE as a dimer. , 2001, Biochemistry.

[75]  H. Noller,et al.  Specific protection of 16 S rRNA by translational initiation factors. , 1995, Journal of molecular biology.

[76]  F. Goldstein,et al.  Antimicrobial resistance among lower respiratory tract isolates of Streptococcus pneumoniae: results of a 1992–93 Western Europe and USA collaborative surveillance study , 1996 .

[77]  M van Heel,et al.  The 3D arrangement of the 23 S and 5 S rRNA in the Escherichia coli 50 S ribosomal subunit based on a cryo-electron microscopic reconstruction at 7.5 A resolution. , 2000, Journal of molecular biology.

[78]  Sarah R. Kirk,et al.  Neomycin−Acridine Conjugate: A Potent Inhibitor of Rev-RRE Binding , 2000 .

[79]  S. Douthwaite,et al.  Oxazolidinone Resistance Mutations in 23S rRNA ofEscherichia coli Reveal the Central Region of Domain V as the Primary Site of Drug Action , 2000, Journal of bacteriology.

[80]  R. Garrett,et al.  Fine structure of the peptidyl transferase centre on 23 S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes. , 1995, Journal of molecular biology.

[81]  J. Frank,et al.  A model of the translational apparatus based on a three-dimensional reconstruction of the Escherichia coli ribosome. , 1995, Biochemistry and cell biology = Biochimie et biologie cellulaire.

[82]  C. Gualerzi,et al.  Late events in translation initiation. Adjustment of fMet-tRNA in the ribosomal P-site. , 1996, Journal of molecular biology.

[83]  T. Hope,et al.  Oligomerization and RNA binding domains of the type 1 human immunodeficiency virus Rev protein: a dual function for an arginine-rich binding motif. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[84]  A. Ueno,et al.  An aminoglycoside antibiotic, neamine, and its aromatic ring substituted derivatives as potential inhibitors for HIV-1 RRE Rev , 2000 .

[85]  M Grunberg-Manago,et al.  Light-scattering studies showing the effect of initiation factors on the reversible dissociation of Escherichia coli ribosomes. , 1975, Journal of molecular biology.

[86]  S. Douthwaite,et al.  The antibiotics micrococcin and thiostrepton interact directly with 23S rRNA nucleotides 1067A and 1095A. , 1994, Nucleic acids research.

[87]  A. Mankin,et al.  A ketolide resistance mutation in domain II of 23S rRNA reveals the proximity of hairpin 35 to the peptidyl transferase centre , 1999, Molecular microbiology.

[88]  R. Garrett,et al.  Sites of interaction of streptogramin A and B antibiotics in the peptidyl transferase loop of 23 S rRNA and the synergism of their inhibitory mechanisms. , 1999, Journal of molecular biology.

[89]  M. Ehrenberg,et al.  Ribosomal RNA and protein mutants resistant to spectinomycin. , 1990, The EMBO journal.

[90]  C. Gualerzi,et al.  Initiation of mRNA translation in prokaryotes. , 1990, Biochemistry.

[91]  M. Mitten,et al.  Design, synthesis, and antimicrobial activity of 6-O-substituted ketolides active against resistant respiratory tract pathogens. , 2000, Journal of medicinal chemistry.

[92]  M. Rodnina,et al.  Ribosome fidelity: tRNA discrimination, proofreading and induced fit. , 2001, Trends in biochemical sciences.

[93]  Y. Tor,et al.  Designing Novel RNA Binders , 1998 .

[94]  S. Douthwaite Interaction of the antibiotics clindamycin and lincomycin with Escherichia coli 23S ribosomal RNA. , 1992, Nucleic acids research.

[95]  A. Mankin,et al.  A novel site of antibiotic action in the ribosome: Interaction of evernimicin with the large ribosomal subunit , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[96]  M. Rodnina,et al.  Conformationally restricted elongation factor G retains GTPase activity but is inactive in translocation on the ribosome. , 2000, Molecular cell.

[97]  S. Mottagui-Tabar,et al.  Evidence for in vivo ribosome recycling, the fourth step in protein biosynthesis , 1998, The EMBO journal.

[98]  J. Hoogmartens,et al.  Macrolides, chemistry, pharmacology and clinical uses , 1993 .

[99]  P. D. Cook,et al.  New piperazinyl polyazacyclophane scaffolds, libraries and biological activities. , 1998, Bioorganic & medicinal chemistry letters.

[100]  B. Vester,et al.  Inhibition of the ribosomal peptidyl transferase reaction by the mycarose moiety of the antibiotics carbomycin, spiramycin and tylosin. , 2000, Journal of molecular biology.

[101]  B. Peterlin,et al.  Control of RNA initiation and elongation at the HIV-1 promoter. , 1994, Annual review of biochemistry.

[102]  A. W. Czarnik,et al.  Inhibitors of protein-RNA complexation that target the RNA: specific recognition of human immunodeficiency virus type 1 TAR RNA by small organic molecules. , 1998, Biochemistry.

[103]  G. Kramer,et al.  Structure, Function, and Genetics of Ribosomes , 1986, Springer Series in Molecular Biology.

[104]  S. Neidle,et al.  Targeting the minor groove of DNA: crystal structures of two complexes between furan derivatives of berenil and the DNA dodecamer d(CGCGAATTCGCG)2. , 1996, Journal of medicinal chemistry.

[105]  D. Chu Section Review Anti-infectives: Recent developments in 14- and 15-membered macrolides , 1995 .

[106]  Michael R. Green,et al.  A human nucleoporin-like protein that specifically interacts with HIV Rev , 1995, Nature.

[107]  V. Ramakrishnan,et al.  Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics , 2000, Nature.

[108]  V. Ramakrishnan,et al.  Crystal structure of an initiation factor bound to the 30S ribosomal subunit. , 2001, Science.

[109]  G. Bertho,et al.  Conformations in solution and bound to bacterial ribosomes of ketolides, HMR 3647 (telithromycin) and RU 72366: a new class of highly potent antibacterials. , 2000, Bioorganic & medicinal chemistry.

[110]  K. Hall,et al.  RNA-protein interactions. , 2002, Current opinion in structural biology.

[111]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[112]  R. Sarma,et al.  Structure, Motion, Interaction and Expression of Biological Macromolecules. , 1998, Journal of biomolecular structure & dynamics.

[113]  J. Beckmann,et al.  Localization of the protein L2 in the 50 S subunit and the 70 S E. coli ribosome. , 2001, Journal of molecular biology.

[114]  A. Frankel,et al.  Specific binding of arginine to TAR RNA. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[115]  G. Högenauer,et al.  Ribosomal binding region for the antibiotic tiamulin: stoichiometry, subunit location, and affinity for various analogs , 1981, Antimicrobial Agents and Chemotherapy.

[116]  C. Squires,et al.  Isolation of kasugamycin resistant mutants in the 16 S ribosomal RNA of Escherichia coli. , 1999, Journal of molecular biology.

[117]  M. Ehrenberg,et al.  Release factor RF3 in E.coli accelerates the dissociation of release factors RF1 and RF2 from the ribosome in a GTP‐dependent manner , 1997, The EMBO journal.

[118]  D. P. Mack,et al.  Discovery of selective, small-molecule inhibitors of RNA complexes--I. The Tat protein/TAR RNA complexes required for HIV-1 transcription. , 1997, Bioorganic & medicinal chemistry.

[119]  T. Klimkait,et al.  Inhibition of HIV-1 Tat-TAR interaction by diphenylfuran derivatives: effects of the terminal basic side chains. , 1999, Bioorganic & medicinal chemistry.

[120]  A. Bonnefoy,et al.  Synthesis and antibacterial activity of ketolides (6-O-methyl-3-oxoerythromycin derivatives): a new class of antibacterials highly potent against macrolide-resistant and -susceptible respiratory pathogens. , 1998, Journal of medicinal chemistry.

[121]  J. Karn,et al.  The structure of the human immunodeficiency virus type-1 TAR RNA reveals principles of RNA recognition by Tat protein. , 1995, Journal of molecular biology.

[122]  H. Stark,et al.  GTPase Mechanisms and Functions of Translation Factors on the Ribosome , 2000, Biological chemistry.

[123]  J. Puglisi,et al.  Structure of the A Site of Escherichia coli 16S Ribosomal RNA Complexed with an Aminoglycoside Antibiotic , 1996, Science.

[124]  W. Wintermeyer,et al.  Prokaryotic initiation factor 2 acts at the level of the 30 S ribosomal subunit , 1986 .

[125]  P. Fernandes,et al.  New macrolides active against Streptococcus pyogenes with inducible or constitutive type of macrolide-lincosamide-streptogramin B resistance , 1989, Antimicrobial Agents and Chemotherapy.

[126]  Utz Fischer,et al.  The HIV-1 Rev Activation Domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs , 1995, Cell.

[127]  A. Gudkov,et al.  Tetracyclines induce changes in accessibility of ribosomal proteins to proteases. , 1996, Biochimie.

[128]  R. Garrett,et al.  Binding sites of the antibiotics pactamycin and celesticetin on ribosomal RNAs. , 1991, Biochimie.

[129]  R. Flamm,et al.  Studies of the Novel Ketolide ABT-773: Transport, Binding to Ribosomes, and Inhibition of Protein Synthesis inStreptococcus pneumoniae , 2000, Antimicrobial Agents and Chemotherapy.

[130]  T. Earnest,et al.  X-ray crystal structures of 70S ribosome functional complexes. , 1999, Science.

[131]  R. Buckingham,et al.  Polypeptide chain release factors , 1997, Molecular microbiology.

[132]  Joachim Frank,et al.  A ratchet-like inter-subunit reorganization of the ribosome during translocation , 2000, Nature.

[133]  F. Neidhardt,et al.  Escherichia Coli and Salmonella: Typhimurium Cellular and Molecular Biology , 1987 .

[134]  C. Merryman,et al.  Nucleotides in 23S rRNA protected by the association of 30S and 50S ribosomal subunits. , 1999, Journal of molecular biology.

[135]  T. Hermann,et al.  Strategies for the Design of Drugs Targeting RNA and RNA-Protein Complexes. , 2000, Angewandte Chemie.

[136]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[137]  H. Egger,et al.  New pleuromutilin derivatives with enhanced antimicrobial activity. I. Synthesis. , 1976, The Journal of antibiotics.

[138]  W. Wilson,et al.  Inhibition of HIV-1 Rev-RRE interaction by diphenylfuran derivatives. , 1996, Biochemistry.

[139]  P. D. Cook,et al.  Synthesis of novel polyazadipyridinocyclophane scaffolds and their application for the generation of libraries , 1998 .

[140]  M. Heel,et al.  Large-Scale Movement of Elongation Factor G and Extensive Conformational Change of the Ribosome during Translocation , 2000, Cell.

[141]  Roger A. Garrett,et al.  The Ribosome, Structure, Function, Antibiotics, and Cellular Interactions , 2000 .

[142]  M Afshar,et al.  Structure-based and combinatorial search for new RNA-binding drugs. , 1999, Current opinion in biotechnology.

[143]  R. Chaisson,et al.  Highly Active Antiretroviral Therapy in a Large Urban Clinic: Risk Factors for Virologic Failure and Adverse Drug Reactions , 1999, Annals of Internal Medicine.

[144]  M. Rosbash,et al.  Identification of a novel nuclear pore-associated protein as a functional target of the HIV-1 Rev protein in yeast , 1995, Cell.