A Parallel Interior Point Method for Stochastic Linear Programs

This paper describes a parallel implementation of the primal-dual interior point method for a special class of large linear programs that occur in stochastic linear programming. The method used by Vanderbei and Carpenter [31] for removing dense columns is modi ed to eliminate variables which link blocks in stochastic linear programs. The algorithm developed was tested on six test problems from the Ho and Loute's collection of staircase linear programs [14] and on nine multi-scenario stochastic network problems [27] which arise in portfolio management. Numerical results demonstrate the e ciency of the resulting algorithm. For an 800 scenario problem with 91 constraints and 248 variables per scenario, a parallel e ciency of 99% is achieved.

[1]  Stavros A. Zenios,et al.  Parallel Numerical Optimization: Current Status and an Annotated Bibliography , 1989, INFORMS J. Comput..

[2]  Clark D. Thomborson,et al.  Does your workstation computation belong on a vector supercomputer? , 1993, CACM.

[3]  Elizabeth R. Jessup,et al.  Parallel Factorization of Structured Matrices Arising in Stochastic Programming , 1994, SIAM J. Optim..

[4]  John M. Mulvey,et al.  A diagonal quadratic approximation method for large scale linear programs , 1992, Oper. Res. Lett..

[5]  Sanjay Mehrotra,et al.  A Study of the Augmented System and Column-Splitting Approaches for Solving Two-Stage Stochastic Linear Programs by Interior-Point Methods , 1995, INFORMS J. Comput..

[6]  N. S. Barnett,et al.  Private communication , 1969 .

[7]  John M. Mulvey,et al.  Formulating Two-Stage Stochastic Programs for Interior Point Methods , 1991, Oper. Res..

[8]  Irvin Lustig,et al.  Feasibility issues in a primal-dual interior-point method for linear programming , 1990, Math. Program..

[9]  Sanjay Mehrotra,et al.  On the Implementation of a Primal-Dual Interior Point Method , 1992, SIAM J. Optim..

[10]  J. Birge,et al.  Computing block-angular Karmarkar projections with applications to stochastic programming , 1988 .

[11]  Gautam Mitra,et al.  The interior point method for LP on parallel computers , 1992 .

[12]  John J. H. Forrest,et al.  Vector processing in simplex and interior methods for linear programming , 1990 .

[13]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[14]  Yuri Ermoliev,et al.  Numerical techniques for stochastic optimization , 1988 .

[15]  I. Lustig,et al.  Computational experience with a primal-dual interior point method for linear programming , 1991 .

[16]  Margaret H. Wright,et al.  Optimization and large-scale computation , 1991 .

[17]  R. Wets,et al.  L-SHAPED LINEAR PROGRAMS WITH APPLICATIONS TO OPTIMAL CONTROL AND STOCHASTIC PROGRAMMING. , 1969 .

[18]  John M. Mulvey,et al.  Applying the progressive hedging algorithm to stochastic generalized networks , 1991, Ann. Oper. Res..

[19]  Roy E. Marsten,et al.  On Implementing Mehrotra's Predictor-Corrector Interior-Point Method for Linear Programming , 1992, SIAM J. Optim..

[20]  Roy E. Marsten,et al.  Feature Article - Interior Point Methods for Linear Programming: Computational State of the Art , 1994, INFORMS J. Comput..

[21]  John E. Beasley,et al.  Linear Programming on Cray Supercomputers , 1990 .

[22]  James K. Ho,et al.  A set of staircase linear programming test problems , 1981, Math. Program..