A Logic of Sequentiality

Game semantics has been used to interpret both proofs and functional programs: an important further development on the programming side has been to model higher-order programs with state by allowing strategies with "history-sensitive" behaviour. In this paper, we develop a detailed analysis of the structure of these strategies from a logical perspective by showing that they correspond to proofs in a new kind of affine logic. We describe the semantics of our logic formally by giving a notion of categorical model and an instance based on a simple category of games. Using further categorical properties of this model, we prove a full completeness result: each total strategy is the semantics of a unique cut-free core proof in the system. We then use this result to derive an explicit cut-elimination procedure.

[1]  Guy McCusker Games and Full Abstraction for FPC , 2000, Inf. Comput..

[2]  Andreas Blass,et al.  A Game Semantics for Linear Logic , 1992, Ann. Pure Appl. Log..

[3]  John Longley Some Programming Languages Suggested by Game Models (Extended Abstract) , 2009, MFPS.

[4]  Jean-Yves Girard Locus Solum: From the Rules of Logic to the Logic of Rules , 2001, CSL.

[5]  M. Hyland,et al.  Games on graphs and sequentially realizable functionals. Extended abstract , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[6]  C.-H. Luke Ong,et al.  On Full Abstraction for PCF: I, II, and III , 2000, Inf. Comput..

[7]  Jaakko Hintikka,et al.  Hyperclassical Logic (A.K.A. If Logic) and its Implications for Logical Theory , 2002, Bulletin of Symbolic Logic.

[8]  John Longley Eriskay : a programming language based on game semantics , 2008 .

[9]  Samson Abramsky,et al.  A fully abstract game semantics for general references , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[10]  James Laird A Categorical Semantics of Higher Order Store , 2002, CTCS.

[11]  Giorgi Japaridze,et al.  Introduction to computability logic , 2003, Ann. Pure Appl. Log..

[12]  Nicholas Wolverson,et al.  Game semantics for an object-oriented language , 2009 .

[13]  Olivier Laurent Polarized games , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[14]  G. M. Kelly,et al.  A note on actions of a monoidal category. , 2001 .

[15]  Martin Hyland,et al.  Games on Graphs and Sequentially Realizable Functionals , 2002, LICS 2002.

[16]  Radha Jagadeesan,et al.  Games and Full Completeness for Multiplicative Linear Logic , 1994, J. Symb. Log..

[17]  G. Plotkin,et al.  Proof, language, and interaction: essays in honour of Robin Milner , 2000 .

[18]  Samson Abramsky,et al.  Linearity, Sharing and State: a fully abstract game semantics for Idealized Algol with active expressions , 1996, Electron. Notes Theor. Comput. Sci..

[19]  Nicolas Tabareau,et al.  Resource modalities in tensor logic , 2010, Ann. Pure Appl. Log..

[20]  S. Shelah,et al.  Annals of Pure and Applied Logic , 1991 .

[21]  Samson Abramsky Axioms for definability and full completeness , 2000, Proof, Language, and Interaction.

[22]  François Lamarche Games semantics for full propositional linear logic , 1995, Proceedings of Tenth Annual IEEE Symposium on Logic in Computer Science.

[23]  David A. Schmidt,et al.  Proceedings of the international conference on Mathematical foundations of programming semantics , 1985 .

[24]  Alan Bundy,et al.  Constructing Induction Rules for Deductive Synthesis Proofs , 2006, CLASE.

[25]  James Laird Locally Boolean domains , 2005, Theor. Comput. Sci..

[26]  Pierre-Louis Curien On the Symmetry of Sequentiality , 1993, MFPS.