Some Complexity Results for Polynomial Ideals

In this paper, we survey some of our new results on the complexity of a number of problems related to polynomial ideals. We consider multivariate polynomials over some ring, like the integers or the rationals. For instance, a polynomial ideal membership problem is a (w+ 1)-tupleP= (f,g1,g2, ?gwwherefand thegiare multivariate polynomials, and the problem is to determine whetherfis in the ideal generated by thegi. For polynomials over the integers or rationals, this problem is known to be exponential space complete. We discuss further complexity results for problems related to polynomial ideals, like the word and subword problems for commutative semigroups, a quantitative version of Hilbert's Nullstellensatz in a complexity theoretic version, and problems concerning the computation of reduced polynomials and Grobner bases.

[1]  Ernst W. Mayr,et al.  Exponential space computation of Gröbner bases , 1996, ISSAC '96.

[2]  Ernst W. Mayr,et al.  An optimal algorithm for constructing the reduced Gröbner basis of binomial ideals , 1996, ISSAC '96.

[3]  J. E. Morais,et al.  Lower Bounds for diophantine Approximation , 1996, alg-geom/9608010.

[4]  Ernst W. Mayr,et al.  Optimal Gröbner Base Algorithms for Binomial Ideals , 1996, ICALP.

[5]  Ernst W. Mayr,et al.  The Complexity of the Equivalence Problem for Commutative Semigroups , 1996 .

[6]  N. Bose Gröbner Bases: An Algorithmic Method in Polynomial Ideal Theory , 1995 .

[7]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.

[8]  Ernst W. Mayr,et al.  The Complexity of the Boundedness, Coverability, and Selfcoverability Problems for Commutative Semigroups , 1995 .

[9]  B. Sturmfels,et al.  Binomial Ideals , 1994, alg-geom/9401001.

[10]  David A. Cox,et al.  Ideals, Varieties, and Algorithms: An Introduction to Computational Algebraic Geometry and Commutative Algebra, 3/e (Undergraduate Texts in Mathematics) , 2007 .

[11]  Teresa Krick,et al.  Membership problem, Representation problem and the Computation of the Radical for one-dimensional Ideals , 1991 .

[12]  Thomas Dubé,et al.  The Structure of Polynomial Ideals and Gröbner Bases , 2013, SIAM J. Comput..

[13]  André Galligo,et al.  Precise sequential and parallel complexity bounds for quantifier elimination over algebraically closed fields , 1990 .

[14]  Y. N. Lakshman,et al.  On the complexity of computing a Gröbner basis for the radical of a zero dimensional ideal , 1990, STOC '90.

[15]  Carlos A. Berenstein,et al.  Bounds for the degrees in the division problem. , 1990 .

[16]  Ernst W. Mayr,et al.  Membership in Plynomial Ideals over Q Is Exponential Space Complete , 1989, STACS.

[17]  Victor Y. Pan,et al.  Parallel Evaluation of the Determinant and of the Inverse of a Matrix , 1989, Inf. Process. Lett..

[18]  Akira Aiba,et al.  Constraints Logic Programming Language CAL , 1988, FGCS.

[19]  André Galligo,et al.  Some New Effectivity Bounds in Computational Geometry , 1988, AAECC.

[20]  José L. Balcázar,et al.  Structural complexity 1 , 1988 .

[21]  J. Kollár Sharp effective Nullstellensatz , 1988 .

[22]  W. Brownawell Bounds for the degrees in the Nullstellensatz , 1987 .

[23]  Victor Y. Pan,et al.  Complexity of Parallel Matrix Computations , 1987, Theor. Comput. Sci..

[24]  Ketan Mulmuley,et al.  A fast parallel algorithm to compute the rank of a matrix over an arbitrary field , 1986, STOC '86.

[25]  Dung T. Huynh,et al.  A Superexponential Lower Bound for Gröbner Bases and Church-Rosser Commutative Thue Systems , 1986, Inf. Control..

[26]  Dung T. Huynh,et al.  The complexity of the equivalence problem for commutative semigroups and symmetric vector addition systems , 1985, STOC '85.

[27]  B. Buchberger,et al.  Grobner Bases : An Algorithmic Method in Polynomial Ideal Theory , 1985 .

[28]  H. Michael Möller,et al.  Upper and Lower Bounds for the Degree of Groebner Bases , 1984, EUROSAM.

[29]  Marc Giusti,et al.  Some Effectivity Problems in Polynomial Ideal Theory , 1984, EUROSAM.

[30]  Stuart J. Berkowitz,et al.  On Computing the Determinant in Small Parallel Time Using a Small Number of Processors , 1984, Inf. Process. Lett..

[31]  Daniel Lazard,et al.  Gröbner-Bases, Gaussian elimination and resolution of systems of algebraic equations , 1983, EUROCAL.

[32]  A. Meyer,et al.  The complexity of the word problems for commutative semigroups and polynomial ideals , 1982 .

[33]  Allan Borodin,et al.  Fast parallel matrix and GCD computations , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[34]  D. Bayer The division algorithm and the hilbert scheme , 1982 .

[35]  Oscar H. Ibarra,et al.  A Note on the Parallel Complexity of Computing the Rank of Order n Matrices , 1980, Inf. Process. Lett..

[36]  Steven Fortune,et al.  Parallelism in random access machines , 1978, STOC.

[37]  Franco P. Preparata,et al.  An Improved Parallel Processor Bound in Fast Matrix Inversion , 1978, Inf. Process. Lett..

[38]  Allan Borodin,et al.  On Relating Time and Space to Size and Depth , 1977, SIAM J. Comput..

[39]  D. Lazard Algèbre linéaire sur $K[X_1,\dots,X_n]$ et élimination , 1977 .

[40]  Richard J. Lipton,et al.  Exponential space complete problems for Petri nets and commutative semigroups (Preliminary Report) , 1976, STOC '76.

[41]  L. Csanky,et al.  Fast parallel matrix inversion algorithms , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[42]  A. Seidenberg Constructions in algebra , 1974 .

[43]  Fred Richman,et al.  Constructive aspects of Noetherian rings , 1974 .

[44]  M. Schützenberger,et al.  Rational sets in commutative monoids , 1969 .

[45]  D. Buchsbaum,et al.  Commutative Algebra, Vol. II. , 1959 .

[46]  Emil L. Post Recursive Unsolvability of a problem of Thue , 1947, Journal of Symbolic Logic.

[47]  Grete Hermann,et al.  Die Frage der endlich vielen Schritte in der Theorie der Polynomideale , 1926 .

[48]  Mitteilungen der Mathematischen Gesellschaft in Hamburg , 1893 .