Vanishing Viscosity Limit of the Compressible Navier-Stokes Equations with General Pressure Law

We prove the convergence of the vanishing viscosity limit of the one-dimensional, isentropic, compressible Navier-Stokes equations to the isentropic Euler equations in the case of a general pressure law. Our strategy relies on the construction of fundamental solutions to the entropy equation that remain controlled for unbounded densities, and employs an improved reduction framework to show that measure-valued solutions constrained by the Tartar commutation relation (but with possibly unbounded support) reduce to a Dirac mass. As the Navier-Stokes equations do not admit an invariant region, we work in the finite-energy setting, where a detailed understanding of the high density regime is crucial.

[1]  Gui-Qiang G. Chen,et al.  Vanishing viscosity limit of the Navier‐Stokes equations to the euler equations for compressible fluid flow , 2009, 0910.2360.

[2]  K. Thorne Gravitational Collapse and the Death of a Star. , 1965, Science.

[3]  Tomáš Roubíček,et al.  Relaxation in Optimization Theory and Variational Calculus , 1997 .

[4]  P. LeFloch,et al.  Finite Energy Method for Compressible Fluids: The Navier‐Stokes‐Korteweg Model , 2012, 1212.5347.

[5]  Gui-Qiang G. Chen,et al.  Vanishing Viscosity Solutions of the Compressible Euler Equations with Spherical Symmetry and Large Initial Data , 2014, 1409.7854.

[6]  Tong Yang,et al.  Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks , 2015 .

[7]  Gui-Qiang G. Chen,et al.  Compressible Euler Equations¶with General Pressure Law , 2000 .

[8]  B. Perthame,et al.  Kinetic formulation of the isentropic gas dynamics andp-systems , 1994 .

[9]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[10]  Tai-Ping Liu,et al.  The inviscid limit for the Navier-Stokes equations of compressible, isentropic flow with shock data , 1989 .

[11]  P. Souganidis,et al.  Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates , 1998 .

[12]  G. D. Maso,et al.  Definition and weak stability of nonconservative products , 1995 .

[13]  Zero dissipation limit to a Riemann solution consisting of two shock waves for the 1D compressible isentropic Navier-Stokes equations , 2013 .

[14]  Giovanni Alberti,et al.  A new approach to variational problems with multiple scales , 2001 .

[15]  Symmetries and Global Solvability of the Isothermal Gas Dynamics Equations , 2005, math/0701100.

[16]  Peizhu Luo,et al.  CONVERGENCE OF THE LAX–FRIEDRICHS SCHEME FOR ISENTROPIC GAS DYNAMICS (III) , 1985 .

[17]  Matthew R. I. Schrecker,et al.  Vanishing Viscosity Approach to the Compressible Euler Equations for Transonic Nozzle and Spherically Symmetric Flows , 2017, 1711.03626.

[18]  Feimin Huang,et al.  Convergence of Viscosity Solutions for Isothermal Gas Dynamics , 2002, SIAM J. Math. Anal..

[19]  Zhouping Xin,et al.  Zero dissipation limit to rarefaction waves for the one‐dimensional navier‐stokes equations of compressible isentropic gases , 1993 .

[20]  S. Conti,et al.  The div-curl lemma for sequences whose divergence and curl are compact in W^{-1,1} , 2009, 0907.0397.

[21]  K. Zumbrun,et al.  Navier–Stokes regularization of multidimensional Euler shocks , 2006 .

[22]  R. J. Diperna,et al.  Convergence of the viscosity method for isentropic gas dynamics , 1983 .

[23]  Michael Westdickenberg,et al.  Finite energy solutions to the isentropic Euler equations with geometric effects , 2007, 0812.2688.

[24]  J. Ball A version of the fundamental theorem for young measures , 1989 .

[25]  D. Hoff Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with differing end states , 1998 .

[26]  I. S. Gradshteyn,et al.  Table of Integrals, Series, and Products , 1976 .

[27]  Gui-Qiang G. Chen,et al.  Existence Theory for the Isentropic Euler Equations , 2003 .