A posteriori error estimates via equilibrated stress reconstructions for contact problems approximated by Nitsche's method

We present an a posteriori error estimate based on equilibrated stress reconstructions for the finite element approximation of a unilateral contact problem with weak enforcement of the contact conditions. We start by proving a guaranteed upper bound for the dual norm of the residual. This norm is shown to control the natural energy norm up to a boundary term, which can be removed under a saturation assumption. The basic estimate is then refined to distinguish the different components of the error, and is used as a starting point to design an algorithm including adaptive stopping criteria for the nonlinear solver and automatic tuning of a regularization parameter. We then discuss an actual way of computing the stress reconstruction based on the Arnold–Falk–Winther finite elements. Finally, after briefly discussing the efficiency of our estimators, we showcase their performance on a panel of numerical tests.

[1]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[2]  Jaroslav Haslinger,et al.  Numerical methods for unilateral problems in solid mechanics , 1996 .

[3]  Alexandre Ern,et al.  An Arbitrary-Order and Compact-Stencil Discretization of Diffusion on General Meshes Based on Local Reconstruction Operators , 2014, Comput. Methods Appl. Math..

[4]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[5]  Jérôme Pousin,et al.  An overview of recent results on Nitsche's method for contact problems , 2016 .

[6]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[7]  Martin Vohralík,et al.  Adaptive regularization, linearization, and discretization and a posteriori error control for the two-phase Stefan problem , 2014, Math. Comput..

[8]  V. Girault,et al.  A Local Regularization Operator for Triangular and Quadrilateral Finite Elements , 1998 .

[9]  Douglas N. Arnold,et al.  Mixed finite element methods for linear elasticity with weakly imposed symmetry , 2007, Math. Comput..

[10]  Alexandre Ern,et al.  A Hybrid High-Order Discretization Combined with Nitsche's Method for Contact and Tresca Friction in Small Strain Elasticity , 2020, SIAM J. Sci. Comput..

[11]  P. Alart,et al.  A generalized Newton method for contact problems with friction , 1988 .

[12]  Martin Vohralík,et al.  Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations , 2015, SIAM J. Numer. Anal..

[13]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[14]  Rolf Stenberg,et al.  On Nitsche's Method for Elastic Contact Problems , 2019, SIAM J. Sci. Comput..

[15]  R. Verfürth A review of a posteriori error estimation techniques for elasticity problems , 1999 .

[16]  Douglas N. Arnold,et al.  Mixed finite elements for elasticity , 2002, Numerische Mathematik.

[17]  Michele Botti,et al.  Equilibrated Stress Tensor Reconstruction and A Posteriori Error Estimation for Nonlinear Elasticity , 2020, Comput. Methods Appl. Math..

[18]  Franz Chouly,et al.  Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments , 2014, Math. Comput..

[19]  Jérôme Droniou,et al.  The Hybrid High-Order Method for Polytopal Meshes , 2020 .

[20]  A. Ern,et al.  Guaranteed and robust a posteriori error estimates and balancing discretization and linearization errors for monotone nonlinear problems , 2011 .

[21]  Franz Chouly,et al.  An adaptation of Nitscheʼs method to the Tresca friction problem , 2014 .

[22]  L. K. Hansen,et al.  Adaptive regularization , 1994, Proceedings of IEEE Workshop on Neural Networks for Signal Processing.

[23]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[24]  A. Ern,et al.  A Hybrid High-Order method for the incompressible Navier-Stokes equations based on Temam's device , 2018, J. Comput. Phys..

[25]  Franz Chouly,et al.  A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis , 2013, SIAM J. Numer. Anal..

[26]  P. Hild,et al.  Residual-based a posteriori error estimation for contact problems approximated by Nitsche’s method , 2018 .

[27]  Barbara Wohlmuth,et al.  Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.

[28]  M. Vohralík A posteriori error estimates for efficiency and error control in numerical simulations , 2011 .

[29]  Yves Renard,et al.  Generalized Newton’s methods for the approximation and resolution of frictional contact problems in elasticity , 2013 .

[30]  Martin Vohralík,et al.  A Posteriori Error Estimates Including Algebraic Error and Stopping Criteria for Iterative Solvers , 2010, SIAM J. Sci. Comput..

[31]  W. Prager,et al.  Approximations in elasticity based on the concept of function space , 1947 .

[32]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[33]  Daniele Antonio Di Pietro,et al.  Equilibrated Stress Reconstructions for Linear Elasticity Problems with Application to a Posteriori Error Analysis , 2017 .