Thermal conductivity of UO2 fuel: Predicting fuel performance from simulation

Recent progress in understanding the thermal-transport properties of UO2 for fission reactors is reviewed from the perspective of computer simulations. A path to incorporating more accurate materials models into fuel performance codes is outlined. In particular, it is argued that a judiciously integrated program of atomic-level simulations and mesoscale simulations offers the possibility of both better predicting the thermal-transport properties of UO2 in light-water reactors and enabling the assessment of the thermal performances of novel fuel systems for which extensive experimental databases are not available.

[1]  K. Ohashi Scattering of Lattice Waves by Dislocations , 1968 .

[2]  D. Lacroix,et al.  Monte Carlo transient phonon transport in silicon and germanium at nanoscales , 2005, physics/0504072.

[3]  G. Bai,et al.  Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia , 2002 .

[4]  J. Lamontagne,et al.  Detailed characterisations of high burn-up structures in oxide fuels , 2008 .

[5]  R. A. Verrall,et al.  Thermal conductivity of hyperstoichiometric SIMFUEL , 1995 .

[6]  J. K. Fink,et al.  Thermophysical properties of uranium dioxide , 2000 .

[7]  H. Matzke,et al.  Fuel research and basic aspects of fuel in-pile performance , 1989 .

[8]  Berend Smit,et al.  Molecular Dynamics Simulations , 2002 .

[9]  P. Klemens Thermal Conduction In Solids , 1976 .

[10]  S. Phillpot,et al.  Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .

[11]  H. Kleykamp,et al.  The chemical state of the fission products in oxide fuels , 1985 .

[12]  M. P. Bohn,et al.  FRACAS: a subcode for the analysis of fuel pellet-cladding mechanical interaction , 1977 .

[13]  R. Pohl,et al.  Phonon Scattering by Point Defects , 1963 .

[14]  D. D. Lanning,et al.  FRAPCON-3: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup , 1997 .

[15]  James S. Tulenko,et al.  Thermal transport properties of uranium dioxide by molecular dynamics simulations , 2008 .

[16]  Cristina H. Amon,et al.  Boltzmann transport equation-based thermal modeling approaches for hotspots in microelectronics , 2006 .

[17]  F. L. Brown,et al.  Solid fission product behavior in uranium-plutonium oxide fuel irradiated in a fast neutron flux , 1969 .

[18]  Joseph Callaway,et al.  Effect of Point Imperfections on Lattice Thermal Conductivity , 1960 .

[19]  Marc Hou,et al.  Comparison of interatomic potentials for UO2. Part I: Static calculations , 2007 .

[20]  Paul C. Millett,et al.  Phase-field simulation of thermal conductivity in porous polycrystalline microstructures , 2008 .

[21]  Cristina H. Amon,et al.  Lattice Boltzmann Modeling of Subcontinuum Energy Transport in Crystalline and Amorphous Microelectronic Devices , 2006 .

[22]  K. Idemitsu,et al.  Evaluation of Thermal Conductivity of Hyperstoichiometric UO2+x by Molecular Dynamics Simulation , 2007 .

[23]  Paul G. Klemens,et al.  Thermal Resistance due to Point Defects at High Temperatures , 1960 .

[24]  J. Noirot,et al.  HIGH BURNUP CHANGES IN UO₂ FUELS IRRADIATED UP TO 83 GWD/T IN M5 ® CLADDINGS , 2009 .

[25]  P. Klemens The Scattering of Low-Frequency Lattice Waves by Static Imperfections , 1955 .

[26]  H. Matzke,et al.  Formation of the rim structure in high burnup fuel , 1997 .

[27]  Michael R. Tonks,et al.  Meso-scale modeling of the influence of intergranular gas bubbles on effective thermal conductivity , 2011 .

[28]  James S. Tulenko,et al.  Toward an Atomistically Informed Fuel Performance Code: Thermal Properties Using FRAPCON and Molecular Dynamics Simulation , 2009 .

[29]  James S. Tulenko,et al.  Thermal Transport in Off‐Stoichiometric Uranium Dioxide by Atomic Level Simulation , 2009 .

[30]  Gang Chen Nanoscale energy transport and conversion : a parallel treatment of electrons, molecules, phonons, and photons , 2005 .

[31]  H. Matzke,et al.  An electron microscopy study of the RIM structure of a UO2 fuel with a high burnup of 7.9% FIMA , 1997 .

[32]  Sandip Mazumder,et al.  Monte Carlo Study of Phonon Heat Conduction in Silicon Thin Films Including Contributions of Optical Phonons , 2010 .

[33]  P. Klemens Thermal Conductivity and Lattice Vibrational Modes , 1958 .

[34]  A. Majumdar,et al.  Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization , 2001 .