Thermal conductivity of UO2 fuel: Predicting fuel performance from simulation
暂无分享,去创建一个
James S. Tulenko | Simon R. Phillpot | Anter El-Azab | S. Phillpot | A. El-Azab | J. Tulenko | A. Chernatynskiy | Aleksandr Chernatynskiy
[1] K. Ohashi. Scattering of Lattice Waves by Dislocations , 1968 .
[2] D. Lacroix,et al. Monte Carlo transient phonon transport in silicon and germanium at nanoscales , 2005, physics/0504072.
[3] G. Bai,et al. Interfacial thermal resistance in nanocrystalline yttria-stabilized zirconia , 2002 .
[4] J. Lamontagne,et al. Detailed characterisations of high burn-up structures in oxide fuels , 2008 .
[5] R. A. Verrall,et al. Thermal conductivity of hyperstoichiometric SIMFUEL , 1995 .
[6] J. K. Fink,et al. Thermophysical properties of uranium dioxide , 2000 .
[7] H. Matzke,et al. Fuel research and basic aspects of fuel in-pile performance , 1989 .
[8] Berend Smit,et al. Molecular Dynamics Simulations , 2002 .
[9] P. Klemens. Thermal Conduction In Solids , 1976 .
[10] S. Phillpot,et al. Comparison of atomic-level simulation methods for computing thermal conductivity , 2002 .
[11] H. Kleykamp,et al. The chemical state of the fission products in oxide fuels , 1985 .
[12] M. P. Bohn,et al. FRACAS: a subcode for the analysis of fuel pellet-cladding mechanical interaction , 1977 .
[13] R. Pohl,et al. Phonon Scattering by Point Defects , 1963 .
[14] D. D. Lanning,et al. FRAPCON-3: A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup , 1997 .
[15] James S. Tulenko,et al. Thermal transport properties of uranium dioxide by molecular dynamics simulations , 2008 .
[16] Cristina H. Amon,et al. Boltzmann transport equation-based thermal modeling approaches for hotspots in microelectronics , 2006 .
[17] F. L. Brown,et al. Solid fission product behavior in uranium-plutonium oxide fuel irradiated in a fast neutron flux , 1969 .
[18] Joseph Callaway,et al. Effect of Point Imperfections on Lattice Thermal Conductivity , 1960 .
[19] Marc Hou,et al. Comparison of interatomic potentials for UO2. Part I: Static calculations , 2007 .
[20] Paul C. Millett,et al. Phase-field simulation of thermal conductivity in porous polycrystalline microstructures , 2008 .
[21] Cristina H. Amon,et al. Lattice Boltzmann Modeling of Subcontinuum Energy Transport in Crystalline and Amorphous Microelectronic Devices , 2006 .
[22] K. Idemitsu,et al. Evaluation of Thermal Conductivity of Hyperstoichiometric UO2+x by Molecular Dynamics Simulation , 2007 .
[23] Paul G. Klemens,et al. Thermal Resistance due to Point Defects at High Temperatures , 1960 .
[24] J. Noirot,et al. HIGH BURNUP CHANGES IN UO₂ FUELS IRRADIATED UP TO 83 GWD/T IN M5 ® CLADDINGS , 2009 .
[25] P. Klemens. The Scattering of Low-Frequency Lattice Waves by Static Imperfections , 1955 .
[26] H. Matzke,et al. Formation of the rim structure in high burnup fuel , 1997 .
[27] Michael R. Tonks,et al. Meso-scale modeling of the influence of intergranular gas bubbles on effective thermal conductivity , 2011 .
[28] James S. Tulenko,et al. Toward an Atomistically Informed Fuel Performance Code: Thermal Properties Using FRAPCON and Molecular Dynamics Simulation , 2009 .
[29] James S. Tulenko,et al. Thermal Transport in Off‐Stoichiometric Uranium Dioxide by Atomic Level Simulation , 2009 .
[30] Gang Chen. Nanoscale energy transport and conversion : a parallel treatment of electrons, molecules, phonons, and photons , 2005 .
[31] H. Matzke,et al. An electron microscopy study of the RIM structure of a UO2 fuel with a high burnup of 7.9% FIMA , 1997 .
[32] Sandip Mazumder,et al. Monte Carlo Study of Phonon Heat Conduction in Silicon Thin Films Including Contributions of Optical Phonons , 2010 .
[33] P. Klemens. Thermal Conductivity and Lattice Vibrational Modes , 1958 .
[34] A. Majumdar,et al. Monte Carlo Study of Phonon Transport in Solid Thin Films Including Dispersion and Polarization , 2001 .