Conjugated polymers as molecular materials: how chain conformation and film morphology influence energy transfer and interchain interactions.

The electronic structure of conjugated polymers is of current interest because of the wide range of potential applications for such materials in optoelectronic devices. It is increasingly clear that the electronic properties of conjugated polymers depend sensitively on the physical conformation of the polymer chains and the way the chains pack together in films. This article reviews the evidence that interchain electronic species do form in conjugated polymer films, and that their number and chemical nature depend on processing conditions; the chain conformation, degree of interchain contact, and rate of energy transfer can be controlled by factors such as choice of solvent, polymer concentration, thermal annealing, presence of electrically charged side groups, and encapsulation of the polymer chains in mesoporous silica. Taken together, the results reconcile many contradictions in the literature and provide a prescription for the optimization of conjugated polymer film morphology for device applications.

[1]  J. Wenisch,et al.  Femtosecond site-selective probing of energy relaxing excitons in poly(phenylenevinylene): Luminescence dynamics and lifetime spectra , 1997 .

[2]  O. Park,et al.  Improvement of EL efficiency in polymer light-emitting diodes by heat treatments , 2001 .

[3]  S. Mukamel,et al.  Oligophenylenevinylene Phane Dimers: Probing the Effect of Contact Site on the Optical Properties of Bichromophoric Pairs , 2000 .

[4]  Lynn F. Lee,et al.  The Nature of Interchain Excitations in Conjugated Polymers: Spatially-Varying Interfacial Solvatochromism of Annealed MEH-PPV Films Studied by Near-Field Scanning Optical Microscopy (NSOM) , 2002 .

[5]  P. Barbara,et al.  Unmasking electronic energy transfer of conjugated polymers by suppression of O(2) quenching , 2000, Science.

[6]  W. Fann,et al.  Fluorescence from Conjugated Polymer Aggregates in Dilute Poor Solution , 1999 .

[7]  Richard D. Schaller,et al.  Near-Field Scanning Optical Microscopy (NSOM) Studies of the Relationship between Interchain Interactions, Morphology, Photodamage, and Energy Transport in Conjugated Polymer Films , 2001 .

[8]  Bradley F. Chmelka,et al.  Magnetic Field Alignment of Ordered Silicate-Surfactant Composites and Mesoporous Silica , 1997 .

[9]  Y. Cao,et al.  Lifetime and degradation effects in polymer light-emitting diodes , 1999 .

[10]  Gustafson,et al.  Spatially and temporally resolved emission from aggregates in conjugated polymers. , 1996, Physical review. B, Condensed matter.

[11]  Donal D. C. Bradley,et al.  Spectral narrowing phenomena in the emission from a conjugated polymer , 1998 .

[12]  B. Schwartz,et al.  Solution processing of conjugated polymers: the effects of polymer solubility on the morphology and electronic properties of semiconducting polymer films , 2001 .

[13]  Doan,et al.  Control of energy transfer in oriented conjugated polymer-mesoporous silica composites , 2000, Science.

[14]  Samuel,et al.  Efficient interchain photoluminescence in a high-electron-affinity conjugated polymer. , 1995, Physical review. B, Condensed matter.

[15]  J. Brédas,et al.  Polarons, bipolarons, and solitons in conducting polymers , 1985 .

[16]  B. Hsieh,et al.  Aggregation Quenching of Luminescence in Electroluminescent Conjugated Polymers , 1999 .

[17]  Gerrit Klaerner,et al.  Oxidative Stability and Its Effect on the Photoluminescence of Poly(Fluorene) Derivatives: End Group Effects , 1999 .

[18]  S. Jenekhe,et al.  Excimers and Exciplexes of Conjugated Polymers , 1994, Science.

[19]  R. H. Friend,et al.  Lasing from conjugated-polymer microcavities , 1996, Nature.

[20]  George G. Malliaras,et al.  Charge transport processes in organic light-emitting devices , 2000 .

[21]  J. Ferraris,et al.  Biexcitons in π-conjugated oligomers: Intensity-dependent femtosecond transient-absorption study , 1998 .

[22]  Gustafson,et al.  Photoluminescence in pyridine-based polymers: Role of aggregates. , 1996, Physical review. B, Condensed matter.

[23]  D. Bradley,et al.  Effective stimulated emission and excited-state absorption cross-section spectra of poly(m-phenylenevinylene-co-2,5-dioctoxy-p-phenylenevinylene) and t,t′-didecycloxy-II-distyrylbenzene , 1997 .

[24]  T. Huser,et al.  Solvent-related conformational changes and aggregation of conjugated polymers studied by single molecule fluorescence spectroscopy , 2001 .

[25]  Jean-Luc Brédas,et al.  Influence of Interchain Interactions on the Absorption and Luminescence of Conjugated Oligomers and Polymers: A Quantum-Chemical Characterization , 1998 .

[26]  W. Spirkl,et al.  Mechanism of gain narrowing in conjugated polymer thin films , 1998 .

[27]  C. Collison,et al.  Origins of aggregation quenching in luminescent phenylenevinylene polymers , 2001 .

[28]  Lynn F. Lee,et al.  Nanoscopic interchain aggregate domain formation in conjugated polymer films studied by third harmonic generation near-field scanning optical microscopy , 2002 .

[29]  H. Bässler,et al.  Picosecond hopping relaxation in conjugated polymers , 1993 .

[30]  Alan J. Heeger,et al.  Solitons in polyacetylene , 1979 .

[31]  Yijian Shi,et al.  Device performance and polymer morphology in polymer light emitting diodes: The control of thin film morphology and device quantum efficiency , 2000 .

[32]  Mats Andersson,et al.  Semiconducting Polymers: A New Class of Solid-State Laser Materials , 1996, Science.

[33]  Mats Andersson,et al.  Ultrafast studies of stimulated emission and gain in solid films of conjugated polymers , 1997 .

[34]  Gustafson,et al.  Exciton dynamics in poly(p-pyridyl vinylene). , 1996, Physical review letters.

[35]  T. Huser,et al.  Single chain spectroscopy of conformational dependence of conjugated polymer photophysics. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Ignacio B. Martini,et al.  Controlling Interchain Interactions in Conjugated Polymers: The Effects of Chain Morphology on Exciton-Exciton Annihilation and Aggregation in MEH-PPV Films , 2000 .

[37]  E. Cantatore,et al.  Plastic transistors in active-matrix displays , 2001, Nature.

[38]  Taehyoung Zyung,et al.  Photoluminescence study on exciton migration and trapping in a copolymer based on poly(fluorene) , 2000 .

[39]  Ifor D. W. Samuel,et al.  Measurement of absolute photoluminescence quantum efficiencies in conjugated polymers , 1995 .

[40]  Y. Z. Lee,et al.  Aggregated states of luminescent conjugated polymers in solutions , 2000 .

[41]  R. Friend,et al.  Optical response of conjugated polymers excited at high intensity , 1999 .

[42]  Arno Kraft,et al.  Electroluminescent Conjugated Polymers-Seeing Polymers in a New Light. , 1998, Angewandte Chemie.

[43]  F. Papadimitrakopoulos,et al.  Thermal and Photochemical Origin of Carbonyl Group Defects in Poly-(P-Phenylenevinylene) , 1994 .

[44]  Benjamin J. Schwartz,et al.  Ultrafast intensity-dependent stimulated emission in conjugated polymers: The mechanism for line-narrowing , 1998 .

[45]  A. Heeger,et al.  Microstructure of thin films of photoluminescent semiconducting polymers , 1998 .

[46]  A. S. Dhoot,et al.  Spin-dependent exciton formation in π-conjugated compounds , 2001, Nature.

[47]  W. R. Salaneck,et al.  Electroluminescence in conjugated polymers , 1999, Nature.

[48]  Y. Melnichenko,et al.  Dimensions of Polymer Chains in Critical Semidilute Solutions , 1997 .

[49]  Daoben Zhu,et al.  Photophysical process of MEH-PPV solution , 1998 .

[50]  Uli Lemmer,et al.  AGGREGATE FLUORESCENCE IN CONJUGATED POLYMERS , 1995 .

[51]  Gerwin H. Gelinck,et al.  POLARON PAIR FORMATION, MIGRATION, AND DECAY ON PHOTOEXCITED POLY(PHENYLENEVINYLENE) CHAINS , 1996 .

[52]  Benjamin J. Schwartz,et al.  Conjugated polymer aggregates in solution: Control of interchain interactions , 1999 .

[53]  B. Schwartz,et al.  Ionomeric control of interchain interactions, morphology, and the electronic properties of conjugated polymer solutions and films , 2002 .

[54]  P. Barbara,et al.  Field-Induced Photoluminescence Modulation of MEH−PPV under Near-Field Optical Excitation , 2001 .

[55]  Kurz,et al.  Femtosecond energy relaxation in pi -conjugated polymers. , 1993, Physical review letters.

[56]  D. Bradley,et al.  Signatures of excitons and polaron pairs in the femtosecond excited-state absorption spectra of phenylene-based conjugated polymers and oligomers , 1999 .

[57]  I. Samuel,et al.  Intra- and inter-molecular photoexcitations in a cyano-substituted poly(p-phenylenevinylene) , 1998 .

[58]  Yong Cao,et al.  Improved quantum efficiency for electroluminescence in semiconducting polymers , 1999, Nature.

[59]  Quantum molecular dynamics study of polaron recombination in conjugated polymers , 2000 .

[60]  A. Heeger,et al.  Flexible light-emitting diodes made from soluble conducting polymers , 1992, Nature.

[61]  A. Heeger,et al.  Visible light emission from semiconducting polymer diodes , 1991 .

[62]  Samuel,et al.  Exciton dynamics in electroluminescent polymers studied by femtosecond time-resolved photoluminescence spectroscopy. , 1995, Physical review. B, Condensed matter.

[63]  Guglielmo Lanzani,et al.  FEMTOSECOND RELAXATION OF PHOTOEXCITATIONS IN A SOLUTION OF A POLY(PARA-PHENYLENE)-TYPE LADDER POLYMER , 1995 .

[64]  S. Tolbert,et al.  Directional energy migration in an oriented nanometer-scale host/guest composite: semiconducting polymers threaded into mesoporous silica , 2001 .

[65]  Lewis J. Rothberg,et al.  Photophysics of phenylenevinylene polymers , 1996 .

[66]  Donal D. C. Bradley,et al.  Conjugated polymer electroluminescence , 1993 .

[67]  A. Epstein,et al.  EXCIPLEX EMISSION FROM BILAYERS OF POLY(VINYL CARBAZOLE) AND PYRIDINE BASED CONJUGATED COPOLYMERS , 1998 .

[68]  C. Reichardt,et al.  Solvent Effects in Organic Chemistry , 1979 .

[69]  S. Tolbert,et al.  Host−Guest Chemistry Using an Oriented Mesoporous Host: Alignment and Isolation of a Semiconducting Polymer in the Nanopores of an Ordered Silica Matrix , 1999 .

[70]  Miller,et al.  Interchain Excitations in Conjugated Polymers. , 1995, Physical review letters.

[71]  J. Ferraris,et al.  Optical determination of chain orientation in electroluminescent polymer films , 1995 .

[72]  B. Hsieh,et al.  A New Family of Highly Emissive Soluble Poly(p-phenylene vinylene) Derivatives. A Step toward Fully Conjugated Blue-Emitting Poly(p-phenylene vinylenes) , 1998 .

[73]  F. Wudl,et al.  Highly sensitive biological and chemical sensors based on reversible fluorescence quenching in a conjugated polymer. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[74]  D. Bout,et al.  Near-Field Scanning Optical Microscopy Studies of Nanoscale Order in Thermally Annealed Films of Poly(9,9-diakylfluorene) , 2002 .

[75]  K. Yoshino,et al.  Cooperative and stimulated emission in poly(p-phenylene-vinylene) thin films and solutions , 1998 .

[76]  E. Conwell MEAN FREE TIME FOR EXCIMER LIGHT EMISSION IN CONJUGATED POLYMERS , 1998 .

[77]  Lynn F. Lee,et al.  Nonlinear Chemical Imaging Nanomicroscopy: From Second and Third Harmonic Generation to Multiplex (Broad-Bandwidth) Sum Frequency Generation Near-Field Scanning Optical Microscopy , 2002 .

[78]  Mark E. Thompson,et al.  Improving the performance of conjugated polymer-based devices by control of interchain interactions and polymer film morphology , 2000 .

[79]  A. Heeger,et al.  Picosecond time-resolved spectroscopy of the excited state in a soluble derivative of poly(phenylene vinylene): Origin of the bimolecular decay , 1998 .

[80]  R. N. Marks,et al.  Light-emitting diodes based on conjugated polymers , 1990, Nature.

[81]  Yang Yang,et al.  Solvation induced morphological effects on the polymer/metal contacts , 2001 .

[82]  C. Collison,et al.  Conformational Effects on the Photophysics of Conjugated Polymers: A Two Species Model for MEH−PPV Spectroscopy and Dynamics , 2001 .

[83]  P. Barbara,et al.  Single-Molecule Spectroscopy of the Conjugated Polymer MEH-PPV , 1999 .

[84]  S. Tolbert,et al.  Interchain and intrachain exciton transport in conjugated polymers: ultrafast studies of energy migration in aligned MEH-PPV/mesoporous silica composites , 2001 .

[85]  David Beljonne,et al.  Excited-State Electronic Structure of Conjugated Oligomers and Polymers: A Quantum-Chemical Approach to Optical Phenomena , 1999 .

[86]  G. Fleming,et al.  Origin of line broadening in the electronic absorption spectra of conjugated polymers: Three-pulse-echo studies of MEH-PPV in toluene , 2000 .

[87]  R. D. Lundberg,et al.  Structural Properties of Ionomers , 1989 .

[88]  S. Tolbert,et al.  Control of Energy Transport in Conjugated Polymers Using an Ordered Mesoporous Silica Matrix , 2001 .

[89]  A. Heeger,et al.  Energy Transfer in Mixtures of Water- Soluble Oligomers: Effect of Charge, Aggregation, and Surfactant Complexation , 2002 .

[90]  T. Swager,et al.  Control of conformational and interpolymer effects in conjugated polymers , 2001, Nature.

[91]  Duncan W. McBranch,et al.  Intensity-dependent relaxation dynamics and the nature of the excited-state species in solid-state conducting polymers , 1997 .

[92]  P. Rossky,et al.  Structural and Electronic Characterization of Chemical and Conformational Defects in Conjugated Polymers , 2001 .

[93]  John M. Warman,et al.  Highly mobile electrons and holes on isolated chains of the semiconducting polymer poly(phenylene vinylene) , 1998, Nature.

[94]  I. Samuel,et al.  The effect of dendrimer generation on LED efficiency , 1999 .

[95]  M. I. Sluch,et al.  Photo- and electroluminescence of poly(2-methoxy,5-(2′-ethylhexyloxy)-p-phenylene vinylene) Langmuir-Blodgett films , 1998 .

[96]  G. Gelinck,et al.  The effect of broken conjugation and aggregation on photo-induced charge separation on polyphenylenevinylene chains , 1997 .

[97]  R. K. Meyer,et al.  Exciton dynamics in soluble poly(p-phenylene vinylene) , 1997 .

[98]  C. Bardeen,et al.  The role of long-lived dark states in the photoluminescence dynamics of phenylene vinylene conjugated polymers , 2002 .

[99]  Miller,et al.  Spatially indirect excitons as primary photoexcitations in conjugated polymers. , 1994, Physical review letters.

[100]  Long Y. Chiang,et al.  Electrostatic self-assembly as a means to create organic photovoltaic devices , 2001 .

[101]  Patrick J. Moyer,et al.  Near-Field Optics: Theory, Instrumentation, and Applications , 1996 .

[102]  S. Ramasesha,et al.  Formation cross-sections of singlet and triplet excitons in π-conjugated polymers , 2001, Nature.

[103]  S. J. Jacobs,et al.  Exciton-exciton annihilation in poly (p-phenylenevinylene) films , 1996 .

[104]  B. Weir,et al.  Changes in structure and morphology in the conjugated polymer meh-ppv , 1999 .

[105]  Kenneth D. Weston,et al.  Mesoscale optical properties of conjugated polymers probed by near-field scanning optical microscopy , 1997 .