CLUSTER EQUIVALENCE AND GRADED DERIVED EQUIVALENCE
暂无分享,去创建一个
[1] R. Gordon,et al. Graded Artin Algebras , 1982 .
[2] Jeremy Rickard,et al. Morita Theory for Derived Categories , 1989 .
[3] I. Reiten,et al. Cluster-tilted algebras are Gorenstein and stably Calabi–Yau , 2005, math/0512471.
[4] Algebras of acyclic cluster type: Tree type and type à , 2010, Nagoya Mathematical Journal.
[5] S. Fomin,et al. Cluster algebras I: Foundations , 2001, math/0104151.
[6] A. Louis,et al. Documenta Mathematica , 1996 .
[7] Steffen Oppermann,et al. Stable categories of higher preprojective algebras , 2009, 0912.3412.
[8] Tilting theory and cluster combinatorics , 2004, math/0402054.
[9] I. Reiten,et al. Mutation of cluster-tilting objects and potentials , 2008, 0804.3813.
[10] Dieter Happel,et al. Triangulated categories in the representation theory of finite dimensional algebras , 1988 .
[11] E. Green,et al. Graded quotients of path algebras: a local theory , 1994 .
[12] On triangulated orbit categories , 2005, math/0503240.
[13] Dieter Happel,et al. On the derived category of a finite-dimensional algebra , 1987 .
[14] Steffen Oppermann,et al. n-representation-finite algebras and n-APR tilting , 2009, 0909.0593.
[15] Bernhard Keller,et al. Deriving DG categories , 1994 .
[16] Claire Amiot. Cluster categories for algebras of global dimension 2 and quivers with potential , 2008, 0805.1035.
[17] Algebras of acyclic cluster type: Tree type and type à , 2013 .
[18] B. Keller,et al. Derived equivalences from mutations of quivers with potential , 2009, 0906.0761.
[19] J. Weyman,et al. Quivers with potentials and their representations II: Applications to cluster algebras , 2009, 0904.0676.
[20] K. Bernhard. DERIVED CATEGORIES AND UNIVERSAL PROBLEMS , 1991 .
[21] Steffen Oppermann,et al. The Image of the Derived Category in the Cluster Category , 2010, 1010.1129.
[22] Andrei Zelevinsky,et al. Generalized associahedra via quiver representations , 2002, math/0205152.
[23] J. Weyman,et al. Quivers with potentials and their representations I: Mutations , 2007, 0704.0649.
[24] Lidia Angeleri Hügel,et al. Handbook of Tilting Theory , 2007 .
[25] Claire Amiot. Sur les petites catégories triangulées , 2008 .
[26] Bernard Leclerc,et al. Cluster algebras , 2014, Proceedings of the National Academy of Sciences.
[27] O. Iyama. Cluster tilting for higher Auslander algebras , 2008, 0809.4897.
[28] Mutation in triangulated categories and rigid Cohen–Macaulay modules , 2006, math/0607736.
[29] B. M. Fulk. MATH , 1992 .
[30] Kiyoshi Igusa. Notes on the no loops conjecture , 1990 .
[31] Helmut Lenzing. Nilpotente Elemente in Ringen von endlicher globaler Dimension , 1969 .