Towards a Multiscale, High-Resolution Model of the Human Brain

To understand the microscopical organization including cellular and fiber architecture it is a necessary prerequisite to build models of the human brain on a sound biological basis. We have recently pushed the limits of current technology by creating the first ultra-high resolution 3D-model of the human brain at nearly cellular resolution of 20 microns, the BigBrain model. At the same time, 3D Polarized Light Imaging provides a window to analyze the fiber architecture, i.e., the way, how brain regions are inter-connected, with unprecedented spatial resolution at the micrometer level. Considering the complexity and the pure size of the human brain with its nearly 86 billion nerve cells, both approaches are most challenging with respect to data handling and analysis in the TeraByte to PetaByte range, and require supercomputers. Parallelization and automation of image processing steps open up new perspectives to speed up the generation of new, ultra-high resolution models of the human brain, to provide new insights into the three-dimensional micro architecture of the human brain.

[1]  K. Amunts,et al.  Towards Ultra-High Resolution Fibre Tract Mapping of the Human Brain – Registration of Polarised Light Images and Reorientation of Fibre Vectors , 2009, Front. Hum. Neurosci..

[2]  B. de Campos Vidal,et al.  Anisotropic properties of the myelin sheath. , 1980, Acta histochemica.

[3]  Douglas L. Rosene,et al.  The Geometric Structure of the Brain Fiber Pathways , 2012, Science.

[4]  Karl Zilles,et al.  Postnatal development of interhemispheric asymmetry in the cytoarchitecture of human area 4 , 1997, Anatomy and Embryology.

[5]  Simon B. Eickhoff,et al.  Testing anatomically specified hypotheses in functional imaging using cytoarchitectonic maps , 2006, NeuroImage.

[6]  R. Snider The Human Brain in Figures and Tables , 1969, Neurology.

[7]  Noam Harel,et al.  Interoperable atlases of the human brain , 2014, NeuroImage.

[8]  S. Herculano‐Houzel The remarkable, yet not extraordinary, human brain as a scaled-up primate brain and its associated cost , 2012, Proceedings of the National Academy of Sciences.

[9]  H. Braak,et al.  The pyramidal cells of Betz within the cingulate and precentral gigantopyramidal field in the human brain , 1976, Cell and Tissue Research.

[10]  Timo Dickscheid,et al.  High-Resolution Fiber Tract Reconstruction in the Human Brain by Means of Three-Dimensional Polarized Light Imaging , 2011, Front. Neuroinform..

[11]  Lukas Breuer,et al.  A new constrained ICA approach for optimal signal decomposition in polarized light imaging , 2013, Journal of Neuroscience Methods.

[12]  B. Pakkenberg,et al.  Aging and the human neocortex , 2003, Experimental Gerontology.

[13]  Simon B. Eickhoff,et al.  Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space—The roles of Brodmann areas 44 and 45 , 2004, NeuroImage.

[14]  Chet C. Sherwood,et al.  Evolution of Specialized Pyramidal Neurons in Primate Visual and Motor Cortex , 2003, Brain, Behavior and Evolution.

[15]  W. Singer,et al.  Interhemispheric asymmetries of the modular structure in human temporal cortex. , 2000, Science.

[16]  Angela R. Laird,et al.  Tackling the multifunctional nature of Broca's region meta-analytically: Co-activation-based parcellation of area 44 , 2013, NeuroImage.

[17]  J DeFelipe,et al.  Estimation of the number of synapses in the cerebral cortex: methodological considerations. , 1999, Cerebral cortex.

[18]  R. Jones A New Calculus for the Treatment of Optical SystemsI. Description and Discussion of the Calculus , 1941 .

[19]  Stephanie Clarke,et al.  Callosal Connections and Functional Subdivision of the Human Occipital Cortex , 1993 .

[20]  B. Gulyás,et al.  Functional Organization of the Human Visual Cortex , 1993 .

[21]  Heidi Johansen-Berg,et al.  Using diffusion imaging to study human connectional anatomy. , 2009, Annual review of neuroscience.

[22]  D. V. Essen,et al.  Cartography and Connectomes , 2013, Neuron.

[23]  Edward T. Bullmore,et al.  Connectomics: A new paradigm for understanding brain disease , 2015, European Neuropsychopharmacology.

[24]  Simon B. Eickhoff,et al.  Microstructural grey matter parcellation and its relevance for connectome analyses , 2013, NeuroImage.

[25]  M. V. van Gemert,et al.  Two-dimensional birefringence imaging in biological tissue using polarization-sensitive optical coherence tomography , 1997, European Conference on Biomedical Optics.

[26]  K. Amunts,et al.  Processing noncanonical sentences in broca's region: reflections of movement distance and type. , 2013, Cerebral cortex.

[27]  Simon B. Eickhoff,et al.  Assignment of functional activations to probabilistic cytoarchitectonic areas revisited , 2007, NeuroImage.

[28]  K. Rockland Visual cortical organization at the single axon level: a beginning , 2002, Neuroscience Research.

[29]  Stanislas Dehaene,et al.  Ripples of consciousness , 2013, Trends in Cognitive Sciences.

[30]  K. Amunts,et al.  Reduction of basal forebrain cholinergic system parallels cognitive impairment in patients at high risk of developing Alzheimer's disease. , 2010, Cerebral cortex.

[31]  D. Pandya,et al.  Distinct Parietal and Temporal Pathways to the Homologues of Broca's Area in the Monkey , 2009, PLoS biology.

[32]  Susumu Mori,et al.  Fiber tracking: principles and strategies – a technical review , 2002, NMR in biomedicine.

[33]  Junfeng Zhu,et al.  Reconstructing micrometer-scale fiber pathways in the brain: Multi-contrast optical coherence tomography based tractography , 2011, NeuroImage.

[34]  Alan C. Evans,et al.  BigBrain: An Ultrahigh-Resolution 3D Human Brain Model , 2013, Science.

[35]  D. Pandya,et al.  Fiber Pathways of the Brain , 2006 .

[36]  Saad Jbabdi,et al.  Long-range connectomics , 2013, Annals of the New York Academy of Sciences.

[37]  Derek K. Jones,et al.  Diffusion‐tensor MRI: theory, experimental design and data analysis – a technical review , 2002 .

[38]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .

[39]  Claus C. Hilgetag,et al.  Are there ten times more glia than neurons in the brain? , 2009, Brain Structure and Function.

[40]  Christoph Palm,et al.  A novel approach to the human connectome: Ultra-high resolution mapping of fiber tracts in the brain , 2011, NeuroImage.

[41]  D. Le Bihan,et al.  Diffusion tensor imaging: Concepts and applications , 2001, Journal of magnetic resonance imaging : JMRI.

[42]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[43]  S. B. Eickhoff,et al.  Quantitative architectural analysis: a new approach to cortical mapping , 2005, Anatomy and Embryology.

[44]  G. Fink,et al.  Connectivity-based approaches in stroke and recovery of function , 2014, The Lancet Neurology.

[45]  R. Jones A New Calculus for the Treatment of Optical Systems. IV. , 1942 .

[46]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.