Syntax and semantics of dependent types

In this chapter we fix a particular syntax for a dependently typed calculus and define an abstract notion of model as well as a general interpretation function mapping syntactical objects to entities in a model. This interpretation function is shown to be sound with respect to the syntax.

[1]  T. Streicher Semantics of Type Theory , 1991, Progress in Theoretical Computer Science.

[2]  Thierry Coquand,et al.  The Calculus of Constructions , 1988, Inf. Comput..

[3]  R. Seely,et al.  Locally cartesian closed categories and type theory , 1984, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  John Cartmell,et al.  Generalised algebraic theories and contextual categories , 1986, Ann. Pure Appl. Log..

[5]  Martin Hofmann,et al.  On the Interpretation of Type Theory in Locally Cartesian Closed Categories , 1994, CSL.

[6]  Adam Obtulowicz Categorical and algebraic aspects of Martin-Löf Type Theory , 1989, Stud Logica.

[7]  Bengt Nordström,et al.  Programming in Martin-Lo¨f's type theory: an introduction , 1990 .

[8]  Eike Ritter,et al.  Categorical Abstract Machines for Higher-Order Typed lambda-Calculi , 1994, Theor. Comput. Sci..

[9]  Pierre-Louis Curien Alpha-conversion, conditions on variables and categorical logic , 1989, Stud Logica.

[10]  Martin Hofmann,et al.  Conservativity of Equality Reflection over Intensional Type Theory , 1995, TYPES.

[11]  Per Martin-Löf,et al.  Constructive mathematics and computer programming , 1984 .

[12]  Martin Hofmann,et al.  Reduction-free normalisation for a polymorphic system , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[13]  Pierre-Louis Curien Substitution up to Isomorphism , 1993, Fundam. Informaticae.

[14]  T. Coquand,et al.  Metamathematical investigations of a calculus of constructions , 1989 .

[15]  Thomas Streicher Dependence and Independence Results for (Impredicative) Calculi of Dependent Types , 1992, Math. Struct. Comput. Sci..

[16]  Bengt Nordström,et al.  The ALF Proof Editor and Its Proof Engine , 1994, TYPES.

[17]  Michael Barr,et al.  Category theory for computing science , 1995, Prentice Hall International Series in Computer Science.

[18]  P. Martin-Löf An Intuitionistic Theory of Types: Predicative Part , 1975 .

[19]  Simone Martini,et al.  Categorical Models of Polymorphism , 1992, Inf. Comput..

[20]  Bernhard Reus,et al.  Program verification in synthetic domain theory , 1995 .

[21]  Roy L. Crole,et al.  Computation and Reasoning , 1994 .

[22]  Gérard Huet A uniform approach to type theory , 1990 .

[23]  Christine Paulin-Mohring,et al.  Extracting ω's programs from proofs in the calculus of constructions , 1989, POPL '89.

[24]  Pierre-Louis Curien Categorical Combinators, Sequential Algorithms, and Functional Programming , 1993, Progress in Theoretical Computer Science.

[25]  M. Hofmann Extensional concepts in intensional type theory , 1995 .

[26]  Healfdene Goguen Typed Operational Semantics , 1995, TLCA.

[27]  J. Lambek,et al.  Introduction to higher order categorical logic , 1986 .

[28]  Erik Palmgren,et al.  Domain Interpretations of Martin-Löf's Partial Type Theory , 1990, Ann. Pure Appl. Log..

[29]  Bart Jacobs Comprehension Categories and the Semantics of Type Dependency , 1993, Theor. Comput. Sci..

[30]  Eugenio Moggi,et al.  A category-theoretic account of program modules , 1989, Mathematical Structures in Computer Science.

[31]  Bengt Nordström The alf proof editor , 1993 .

[32]  Zhaohui Luo,et al.  Program Speciication and Data Reenement in Type Theory , 1991 .

[33]  John C. Mitchell,et al.  Higher-order modules and the phase distinction , 1989, POPL '90.

[34]  Jan M. Smith The Independence of Peano's Fourth Axiom from Martin-Lof's Type Theory Without Universes , 1988, J. Symb. Log..

[35]  John C. Reynolds,et al.  On Functors Expressible in the Polymorphic Typed Lambda Calculus , 1993, Inf. Comput..

[36]  Prakash Panangaden,et al.  Categorical Type Theory , 1985 .

[37]  Andrew M. Pitts,et al.  The theory of constructions: Categorical semantics and topos-theoretic models , 1987 .

[38]  Martin Hofmann,et al.  The groupoid model refutes uniqueness of identity proofs , 1994, Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science.

[39]  Peter Dybjer,et al.  Internal Type Theory , 1995, TYPES.

[40]  Roy L. Crole,et al.  Categories for Types , 1994, Cambridge mathematical textbooks.

[41]  John C. Mitchell,et al.  On the type structure of standard ML , 1993, TOPL.

[42]  Thorsten Altenkirch,et al.  Proving Strong Normalization of CC by Modifying Realizability Semantics , 1994, TYPES.