A re-examination of the asaociation of magnesium and massive sulfide ores

Abstract Abnormal concentrations of magnesia are frequently associated with massive, Cu–Zn-bearing, sulfide (pyrite and/or pyrrhotite) deposits. Research on some reported occurrences of magnesia concentrations associated with volcanogenic, massive sulfide deposits suggests that such concentrations may result from syngenetic, metasomatic alteration of volcanic rocks in the vicinity of submarine volcanic centers by hydrothermal solutions and sea-water. Inasmush as the hydrothermal solutions consist of sea-water heated during convective circulation through the volcanic pile, the eventual source of magnesia is, in all cases, the sea-water. Cordierite–anthophyllite rocks are developed through thermal metamorphism of the altered volcanic rocks. It is suggested that this explanation is also appropriate to the cordierite–anthophyllite and other rocks of the “magnesia metasomatic” suites of Orijarvi in Finland and other similar deposits occurring in south-western Finland and central Sweden.

[1]  M. R. Stauffer,et al.  The Amisk Group: An Aphebian(?) Island Arc Deposit , 1975 .

[2]  D. Rickard,et al.  Genesis of Precambrian sulfide ores, Skellefte District, Sweden; a reply , 1975 .

[3]  D. Mossman,et al.  Origin and metamorphism of the Flin Flon stratabound Cu-Zn sulfide deposit, Saskatchewan and Manitoba , 1975 .

[4]  R. G. Roberts The geological setting of the Mattagami Lake Mine, Quebec; a volcanogenic massive sulfide deposit , 1975 .

[5]  G. Landis,et al.  Isotopic Evidence for the Origin of Mississippi Valley-Type Mineral Deposits: A Review , 1974 .

[6]  H. Ohmoto,et al.  Sulfur and Carbon Isotopes and Ore Genesis: A Review , 1974 .

[7]  H. Ohmoto,et al.  Hydrogen and Oxygen Isotopic Compositions of Fluid Inclusions in the Kuroko Deposits, Japan , 1974 .

[8]  N. MacRae Sulfurization of Basalt Under Thermal Metamorphic Conditions to Produce Cordierite-Bearing Rocks , 1974 .

[9]  C. J. Hughes Spilites, keratophyres, and the igneous spectrum , 1972, Geological Magazine.

[10]  H. D. Upadhyay,et al.  Geology of the Gullbridge Copper Deposit, Newfoundland: Volcanogenic Sulfides In Cordierite–Anthophyllite Rocks , 1972 .

[11]  Andrée de Rosen-Spence Genèse des roches à cordiérite–anthophyllite des gisements cupro-zincifères de la région de Rouyn–Noranda, Québec, Canada , 1969 .

[12]  K. H. Wedepohl Handbook of Geochemistry , 1969 .

[13]  E. Froese General Geology of the Coronation Mine area , 1969 .

[14]  D. Whitmore Geology of the Coronation Copper Deposit , 1969 .

[15]  E. Froese Metamorphic Rocks From the Coronation Mine and Surrounding area , 1969 .

[16]  R. E. Smith Redistriution of Major Elements in the Alteration of Some Basic Lavas during Burial Metamorphism , 1968 .

[17]  T. Vallance Mafic Rock Alteration and Isochemical Development of Some Cordierite-Anthophyllite Rocks , 1967 .

[18]  Konrad B. Krauskopf,et al.  Introduction to geochemistry , 1967 .

[19]  E. Bonatti Deep-Sea Authigenic Calcite and Dolomite , 1966, Science.

[20]  P. Geijer On the origin of the Falun type of sulfide mineralization , 1964 .

[21]  H. J. Koark Zur Altersstellung und Entstehung der Sulfiderze vom Typus Falun , 1962 .

[22]  C. Oftedahl A Theory of Exhalative-Sedimentary Ores , 1958 .

[23]  M. H. Battey Alkali Metasomatism and the Petrology of Some Keratophyres , 1955, Geological Magazine.

[24]  C. Correns Faktoren der Sedimentbildung, erläutert an Kalk- und Kieselsedimenten , 1950 .