Semi-definite programming and functional inequalities for distributed parameter systems

We study one-dimensional integral inequalities on bounded domains, with quadratic integrands. Conditions for these inequalities to hold are formulated in terms of function matrix inequalities which must hold in the domain of integration. For the case of polynomial function matrices, sufficient conditions for positivity of the matrix inequality and, therefore, for the integral inequalities are cast as semi-definite programs. The inequalities are used to study stability of linear partial differential equations.

[1]  A. Movchan,et al.  The direct method of Liapunov in stability problems of elastic systems , 1959 .

[2]  Enrique Zuazua,et al.  Stabilization of the Wave Equation on 1-d Networks , 2009, SIAM J. Control. Optim..

[3]  Markus Schweighofer,et al.  On the complexity of Putinar's Positivstellensatz , 2005, J. Complex..

[4]  Antonios Armaou,et al.  Analysis and control of parabolic PDE systems with input constraints , 2003, Autom..

[5]  B. Reznick,et al.  Sums of squares of real polynomials , 1995 .

[6]  Christophe Prieur,et al.  Boundary observers for linear and quasi-linear hyperbolic systems with application to flow control , 2013, Autom..

[7]  Didier Henrion,et al.  Convex Computation of the Region of Attraction of Polynomial Control Systems , 2012, IEEE Transactions on Automatic Control.

[8]  A. Vicino,et al.  On convexification of some minimum distance problems , 1999, 1999 European Control Conference (ECC).

[9]  A. Papachristodoulou,et al.  Nonlinear control synthesis by sum of squares optimization: a Lyapunov-based approach , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[10]  A. Papachristodoulou,et al.  On the Analysis of Systems Described by Classes of Partial Differential Equations , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.

[11]  Paul J. Goulart,et al.  Global Stability Analysis of Fluid Flows using Sum-of-Squares , 2010, ACC 2010.

[12]  Ufuk Topcu,et al.  Robust Region-of-Attraction Estimation , 2010, IEEE Transactions on Automatic Control.

[13]  Pablo A. Parrilo,et al.  SOSTOOLS Version 3.00 Sum of Squares Optimization Toolbox for MATLAB , 2013, ArXiv.

[14]  Miroslav Krstic,et al.  Magnetohydrodynamic state estimation with boundary sensors , 2008, Autom..

[15]  H. Weinberger,et al.  An optimal Poincaré inequality for convex domains , 1960 .

[16]  Abdul-Majid Wazwaz,et al.  Partial differential equations : methods and applications , 2002 .

[18]  P. Parrilo Structured semidefinite programs and semialgebraic geometry methods in robustness and optimization , 2000 .

[19]  Brigitte d'Andréa-Novel,et al.  Stabilization of a rotating body beam without damping , 1998, IEEE Trans. Autom. Control..

[20]  R. Datko Extending a theorem of A. M. Liapunov to Hilbert space , 1970 .

[21]  Sophie Tarbouriech,et al.  Design of Polynomial Control Laws for Polynomial Systems Subject to Actuator Saturation , 2013, IEEE Transactions on Automatic Control.

[22]  Christophe Prieur,et al.  A Strict Control Lyapunov Function for a Diffusion Equation With Time-Varying Distributed Coefficients , 2013, IEEE Transactions on Automatic Control.

[23]  Brian Straughan,et al.  The Energy Method, Stability, and Nonlinear Convection , 1991 .

[24]  M. Krstić Boundary Control of PDEs: A Course on Backstepping Designs , 2008 .

[25]  Hans Zwart,et al.  An Introduction to Infinite-Dimensional Linear Systems Theory , 1995, Texts in Applied Mathematics.

[26]  Peter J Seiler,et al.  SOSTOOLS: Sum of squares optimization toolbox for MATLAB , 2002 .

[27]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[28]  Emmanuel Trélat,et al.  Nonlinear Optimal Control via Occupation Measures and LMI-Relaxations , 2007, SIAM J. Control. Optim..

[29]  J. Lasserre Moments, Positive Polynomials And Their Applications , 2009 .

[30]  Antonis Papachristodoulou,et al.  Positive Forms and Stability of Linear Time-Delay Systems , 2006, Proceedings of the 45th IEEE Conference on Decision and Control.