Double stimuli-responsive behavior of aliphatic poly(urethane-amine)s derived from supercritical carbon dioxide.

Copolymeric products from 2-methylaziridine and carbon dioxide showed sharp and rapid phase transitions in response to both temperature and pH; the responsive property can be controlled by varying the reaction conditions whilst maintaining the supercritical state.

[1]  Y. Gan,et al.  Poly(N-acryloyl-N'-propylpiperazine) : A new stimuli-responsive polymer , 2000 .

[2]  K. Edwards,et al.  A New Double-Responsive Block Copolymer Synthesized via RAFT Polymerization: Poly(N-isopropylacrylamide)-block-poly(acrylic acid) , 2004 .

[3]  R Langer,et al.  Responsive polymeric delivery systems. , 2001, Advanced drug delivery reviews.

[4]  M. Akashi,et al.  Synthesis and Functionalities of Poly(N-vinylalkylamide). 13. Synthesis and Properties of Thermal and pH Stimuli-Responsive Poly(vinylamine) Copolymers , 2001 .

[5]  Ashutosh Chilkoti,et al.  Control of protein–ligand recognition using a stimuli-responsive polymer , 1995, Nature.

[6]  Takashi Miyata,et al.  A reversibly antigen-responsive hydrogel , 1999, Nature.

[7]  Alexei R. Khokhlov,et al.  pH-Responsive Gels of Hydrophobically Modified Poly(acrylic acid) , 1997 .

[8]  Hiroshi Uyama,et al.  Thermo- and pH-Responsive Biodegradable Poly(α-N-substituted γ-glutamine)s , 2003 .

[9]  Y. Hsieh,et al.  Dual temperature‐ and pH‐sensitive hydrogels from interpenetrating networks and copolymerization of N‐isopropylacrylamide and sodium acrylate , 2004 .

[10]  E. Pişkin,et al.  A potential gene delivery vector: N‐isopropylacrylamide‐ethyleneimine block copolymers , 2002 .

[11]  K. Kataoka,et al.  Novel pH-sensitive hydrogels of segmented poly(amine ureas) having a repetitive array of polar and apolar units in the main chain , 1995 .

[12]  Dibakar Dhara,et al.  Interpenetrating Networks of Poly(N-isopropyl-acrylamide) with Anionic and Cationic Polymers , 2001 .

[13]  A. Hoffman,et al.  Graft copolymers that exhibit temperature-induced phase transitions over a wide range of pH , 1995, Nature.

[14]  P. Jessop,et al.  Homogeneous catalysis in supercritical fluids. , 1999, Science.

[15]  Eric J. Beckman,et al.  Supercritical and near-critical CO2 in green chemical synthesis and processing , 2004 .

[16]  K. Soga,et al.  Copolymerization of carbon dioxide with propyleneimine , 1974 .

[17]  Toyoichi Tanaka,et al.  Phase transition in polymer gels induced by visible light , 1990, Nature.

[18]  A. P. de Silva,et al.  Fluorescent polymeric AND logic gate with temperature and pH as inputs. , 2004, Journal of the American Chemical Society.

[19]  T. Ikariya,et al.  Synthesis of thermoresponsive polyurethane from 2-methylaziridine and supercritical carbon dioxide. , 2004, Angewandte Chemie.

[20]  Curtis W. Frank,et al.  A microfluidic actuator based on thermoresponsive hydrogels , 2003 .

[21]  Seon Jeong Kim,et al.  Temperature/pH‐sensitive comb‐type graft hydrogels composed of chitosan and poly(N‐isopropylacrylamide) , 2004 .

[22]  Y. Osada,et al.  A polymer gel with electrically driven motility , 1992, Nature.

[23]  E. Beckman Making Polymers from Carbon Dioxide , 1999, Science.

[24]  S. Sugihara,et al.  Thermosensitive Random Copolymers of Hydrophilic and Hydrophobic Monomers Obtained by Living Cationic Copolymerization1 , 2004 .

[25]  T. Okano,et al.  Temperature-responsive polymeric carriers incorporating hydrophobic monomers for effective transfection in small doses. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[26]  M. Heskins,et al.  Solution Properties of Poly(N-isopropylacrylamide) , 1968 .

[27]  K. Kono,et al.  Rendering poly(amidoamine) or poly(propylenimine) dendrimers temperature sensitive. , 2004, Journal of the American Chemical Society.