Fabrication of Efficient Low-Bandgap Perovskite Solar Cells by Combining Formamidinium Tin Iodide with Methylammonium Lead Iodide.

Mixed tin (Sn)-lead (Pb) perovskites with high Sn content exhibit low bandgaps suitable for fabricating the bottom cell of perovskite-based tandem solar cells. In this work, we report on the fabrication of efficient mixed Sn-Pb perovskite solar cells using precursors combining formamidinium tin iodide (FASnI3) and methylammonium lead iodide (MAPbI3). The best-performing cell fabricated using a (FASnI3)0.6(MAPbI3)0.4 absorber with an absorption edge of ∼1.2 eV achieved a power conversion efficiency (PCE) of 15.08 (15.00)% with an open-circuit voltage of 0.795 (0.799) V, a short-circuit current density of 26.86(26.82) mA/cm(2), and a fill factor of 70.6(70.0)% when measured under forward (reverse) voltage scan. The average PCE of 50 cells we have fabricated is 14.39 ± 0.33%, indicating good reproducibility.

[1]  Fan Zuo,et al.  Binary‐Metal Perovskites Toward High‐Performance Planar‐Heterojunction Hybrid Solar Cells , 2014, Advanced materials.

[2]  Yanfa Yan,et al.  Lead‐Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22% , 2016, Advanced materials.

[3]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[4]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.

[5]  Mercouri G Kanatzidis,et al.  Anomalous band gap behavior in mixed Sn and Pb perovskites enables broadening of absorption spectrum in solar cells. , 2014, Journal of the American Chemical Society.

[6]  T. Ma,et al.  CH3NH3SnxPb(1-x)I3 Perovskite Solar Cells Covering up to 1060 nm. , 2014, The journal of physical chemistry letters.

[7]  N. Zhao,et al.  Organic Cation‐Dependent Degradation Mechanism of Organotin Halide Perovskites , 2016 .

[8]  Wei Lin Leong,et al.  Formamidinium tin-based perovskite with low Eg for photovoltaic applications , 2015 .

[9]  Kai Zhu,et al.  Efficient planar perovskite solar cells based on 1.8 eV band gap CH3NH3PbI2Br nanosheets via thermal decomposition. , 2014, Journal of the American Chemical Society.

[10]  Thomas Feurer,et al.  High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. , 2015, The journal of physical chemistry letters.

[11]  Bernd Rech,et al.  A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells , 2016, Science.

[12]  Mercouri G Kanatzidis,et al.  Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. , 2013, Inorganic chemistry.

[13]  Seong Sik Shin,et al.  Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF₂-Pyrazine Complex. , 2016, Journal of the American Chemical Society.

[14]  Zhibin Yang,et al.  Stable Low‐Bandgap Pb–Sn Binary Perovskites for Tandem Solar Cells , 2016, Advanced materials.

[15]  Qingfeng Dong,et al.  Electron-hole diffusion lengths > 175 μm in solution-grown CH3NH3PbI3 single crystals , 2015, Science.

[16]  Nam-Gyu Park,et al.  Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide. , 2015, Journal of the American Chemical Society.

[17]  J. Heo,et al.  CH3NH3PbBr3–CH3NH3PbI3 Perovskite–Perovskite Tandem Solar Cells with Exceeding 2.2 V Open Circuit Voltage , 2016, Advanced materials.

[18]  M. Kanatzidis,et al.  All-solid-state dye-sensitized solar cells with high efficiency , 2012, Nature.

[19]  W. Choy,et al.  Perovskite-organic hybrid tandem solar cells using a nanostructured perovskite layer as the light window and a PFN/doped-MoO3/MoO3 multilayer as the interconnecting layer. , 2016, Nanoscale.

[20]  M. Kanatzidis,et al.  Antagonism between Spin-Orbit Coupling and Steric Effects Causes Anomalous Band Gap Evolution in the Perovskite Photovoltaic Materials CH3NH3Sn1-xPbxI3. , 2015, The journal of physical chemistry letters.

[21]  Nripan Mathews,et al.  Lead‐Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation , 2014, Advanced materials.

[22]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[23]  F. So,et al.  High‐Efficiency Solution‐Processed Planar Perovskite Solar Cells with a Polymer Hole Transport Layer , 2015 .

[24]  D. Mitzi,et al.  Employing Lead Thiocyanate Additive to Reduce the Hysteresis and Boost the Fill Factor of Planar Perovskite Solar Cells , 2016, Advanced materials.