The Proton-translocating a Subunit of F0F1-ATP Synthase Is Allocated Asymmetrically to the Peripheral Stalk*

The position of the a subunit of the membrane-integral F0 sector of Escherichia coli ATP synthase was investigated by single molecule fluorescence resonance energy transfer studies utilizing a fusion of enhanced green fluorescent protein to the C terminus of the a subunit and fluorescent labels attached to specific positions of the ϵ or γ subunits. Three fluorescence resonance energy transfer levels were observed during rotation driven by ATP hydrolysis corresponding to the three resting positions of the rotor subunits, γ or ϵ, relative to the a subunit of the stator. Comparison of these positions of the rotor sites with those previously determined relative to the b subunit dimer indicates the position of a as adjacent to the b dimer on its counterclockwise side when the enzyme is viewed from the cytoplasm. This relationship provides stability to the membrane interface between a and b2, allowing it to withstand the torque imparted by the rotor during ATP synthesis as well as ATP hydrolysis.

[1]  J. Weber,et al.  Catalytic mechanism of F1-ATPase. , 1997, Biochimica et biophysica acta.

[2]  Patrick Polzer,et al.  Structure of the Rotor Ring of F-Type Na+-ATPase from Ilyobacter tartaricus , 2005, Science.

[3]  A. Leslie,et al.  On the structure of the stator of the mitochondrial ATP synthase , 2006, The EMBO journal.

[4]  Peter Gräber,et al.  Comparison of ΔpH‐ and Δφ‐driven ATP synthesis catalyzed by the H+‐ATPases from Escherichia coli or chloroplasts reconstituted into liposomes , 1999 .

[5]  J. Rubinstein,et al.  ATP synthase from Saccharomyces cerevisiae: location of the OSCP subunit in the peripheral stalk region. , 2002, Journal of molecular biology.

[6]  Michael Börsch,et al.  Enzymatic control of the size of DNA block copolymer nanoparticles. , 2008, Angewandte Chemie.

[7]  R. Aggeler,et al.  Rotation of a gamma-epsilon subunit domain in the Escherichia coli F1F0-ATP synthase complex. The gamma-epsilon subunits are essentially randomly distributed relative to the alpha3beta3delta domain in the intact complex. , 1997, The Journal of biological chemistry.

[8]  M. Saraste,et al.  FEBS Lett , 2000 .

[9]  B. Böttcher,et al.  Direct visualisation of conformational changes in EF(0)F(1) by electron microscopy. , 2000, Journal of molecular biology.

[10]  Suren Felekyan,et al.  Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis. , 2006, The journal of physical chemistry. B.

[11]  M. Wilce,et al.  Structure of the γ–ɛ complex of ATP synthase , 2000, Nature Structural Biology.

[12]  R. Haugland,et al.  Alexa Dyes, a Series of New Fluorescent Dyes that Yield Exceptionally Bright, Photostable Conjugates , 1999, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[13]  James H Werner,et al.  A comparison of the fluorescence dynamics of single molecules of a green fluorescent protein: one- versus two-photon excitation. , 2006, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  Jens Michaelis,et al.  Single-molecule tracking of mRNA exiting from RNA polymerase II , 2008, Proceedings of the National Academy of Sciences.

[15]  P. Boyer The ATP synthase--a splendid molecular machine. , 1997, Annual review of biochemistry.

[16]  Michael Börsch,et al.  Subunit movements in membrane-integrated EF0F1 during ATP synthesis detected by single-molecule spectroscopy. , 2006, Biochimica et biophysica acta.

[17]  R. H. Fillingame,et al.  Interaction of transmembrane helices in ATP synthase subunit a in solution as revealed by spin label difference NMR. , 2008, Biochimica et biophysica acta.

[18]  Michael Börsch,et al.  K+-translocating KdpFABC P-type ATPase from Escherichia coli acts as a functional and structural dimer. , 2008, Biochemistry.

[19]  L. Stryer,et al.  Energy transfer: a spectroscopic ruler. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Panke,et al.  Kinetic modeling of rotary CF0F1-ATP synthase: storage of elastic energy during energy transduction , 1999, Biochimica et biophysica acta.

[21]  S. McKinney,et al.  Analysis of single-molecule FRET trajectories using hidden Markov modeling. , 2006, Biophysical journal.

[22]  宁北芳,et al.  疟原虫var基因转换速率变化导致抗原变异[英]/Paul H, Robert P, Christodoulou Z, et al//Proc Natl Acad Sci U S A , 2005 .

[23]  Hiroyasu Itoh,et al.  Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase , 2001, Nature.

[24]  Daniel J. Cipriano,et al.  Stochastic High-speed Rotation of Escherichia coli ATP Synthase F1 Sector , 2006, Journal of Biological Chemistry.

[25]  R. H. Fillingame,et al.  Transmembrane Topography of Subunit a in the Escherichia coli F1F0 ATP Synthase* , 1998, The Journal of Biological Chemistry.

[26]  Michael Börsch,et al.  Stepwise rotation of the γ‐subunit of EF0F1‐ATP synthase observed by intramolecular single‐molecule fluorescence resonance energy transfer 1 , 2002 .

[27]  Michael Börsch,et al.  Engineering the structural properties of DNA block copolymer micelles by molecular recognition. , 2007, Angewandte Chemie.

[28]  R. Tsien,et al.  green fluorescent protein , 2020, Catalysis from A to Z.

[29]  B. Böttcher,et al.  A Unique Resting Position of the ATP-synthase from Chloroplasts* , 2003, The Journal of Biological Chemistry.

[30]  Michael Börsch,et al.  Both Rotor and Stator Subunits Are Necessary for Efficient Binding of F1 to F0 in Functionally Assembled Escherichia coli ATP Synthase* , 2005, Journal of Biological Chemistry.

[31]  Michael Börsch,et al.  Proton-powered subunit rotation in single membrane-bound F0F1-ATP synthase , 2004, Nature Structural &Molecular Biology.

[32]  U. Lücken,et al.  Molecular architecture of Escherichia coli F1 adenosinetriphosphatase. , 1989, Biochemistry.

[33]  R. H. Fillingame,et al.  Aqueous access pathways in subunit a of rotary ATP synthase extend to both sides of the membrane , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[34]  Michael Börsch,et al.  Exploiting the nitrilotriacetic acid moiety for biolabeling with ultrastable perylene dyes. , 2008, Journal of the American Chemical Society.

[35]  C. Kumamoto,et al.  Genetic evidence for interaction between the a and b subunits of the F0 portion of the Escherichia coli proton translocating ATPase. , 1986, The Journal of biological chemistry.

[36]  M Dahan,et al.  Ratiometric single-molecule studies of freely diffusing biomolecules. , 2001, Annual review of physical chemistry.

[37]  T. Ha,et al.  Bridging conformational dynamics and function using single-molecule spectroscopy. , 2006, Structure.

[38]  Michael Börsch,et al.  Movements of the ε‐subunit during catalysis and activation in single membrane‐bound H+‐ATP synthase , 2005 .

[39]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[40]  R. Aggeler,et al.  Cross-linking of the gamma subunit of the Escherichia coli ATPase (ECF1) via cysteines introduced by site-directed mutagenesis. , 1992, The Journal of biological chemistry.

[41]  R. Henderson,et al.  Structure of the mitochondrial ATP synthase by electron cryomicroscopy , 2003, The EMBO journal.

[42]  S. Dunn,et al.  Site-directed Cross-linking of b to the α, β, anda Subunits of the Escherichia coli ATP Synthase* , 2000, The Journal of Biological Chemistry.

[43]  Gabriele Deckers-Hebestreit,et al.  Direct Interaction of Subunits a and b of the F0 Complex of Escherichia coli ATP Synthase by Forming an ab2 Subcomplex* , 2003, Journal of Biological Chemistry.

[44]  R. H. Fillingame,et al.  Structure of the Membrane Domain of Subunit b of the Escherichia coli F0F1 ATP Synthase* , 1999, The Journal of Biological Chemistry.

[45]  R. H. Fillingame,et al.  Coupling H(+) transport to rotary catalysis in F-type ATP synthases: structure and organization of the transmembrane rotary motor. , 2000, The Journal of experimental biology.

[46]  R. Nakamoto,et al.  Stability and functionality of cysteine‐less FOF1 ATP synthase from Escherichia coli , 1998, FEBS letters.

[47]  The "second stalk" of Escherichia coli ATP synthase: structure of the isolated dimerization domain. , 2002, Biochemistry.

[48]  F. Young Biochemistry , 1955, The Indian Medical Gazette.