Enabling Onboard Detection of Events of Scientific Interest for the Europa Clipper Spacecraft

Data analysis and machine learning methods have great potential to aid in planetary exploration. Spacecraft often operate at great distances from the Earth, and the ability to autonomously detect features of interest onboard can enable content-sensitive downlink prioritization to increase mission science return. We describe algorithms that we designed to assist in three specific scientific investigations to be conducted during flybys of Jupiter's moon Europa: the detection of thermal anomalies, compositional anomalies, and plumes of icy matter from Europa's subsurface ocean. We also share the unique constraints imposed by the onboard computing environment and several lessons learned in our collaboration with planetary scientists and mission designers.

[1]  K. Wagstaff,et al.  AUTONOMOUS REAL-TIME DETECTION OF PLUMES AND JETS FROM MOONS AND COMETS , 2014 .

[2]  R. Green,et al.  The Mapping Imaging Spectrometer for Europa (MISE) Investigation , 2015 .

[3]  Kiri Wagstaff,et al.  On-board analysis of uncalibrated data for a spacecraft at mars , 2007, KDD '07.

[4]  T. Estlin,et al.  AEGIS autonomous targeting for ChemCam on Mars Science Laboratory: Deployment and results of initial science team use , 2017, Science Robotics.

[5]  Xiaoli Yu,et al.  Adaptive multiple-band CFAR detection of an optical pattern with unknown spectral distribution , 1990, IEEE Trans. Acoust. Speech Signal Process..

[6]  Nasser M. Nasrabadi,et al.  Hyperspectral Target Detection : An Overview of Current and Future Challenges , 2014, IEEE Signal Processing Magazine.

[7]  Matt Welsh,et al.  Sensor web enables rapid response to volcanic activity , 2006 .

[8]  N. Gehrels,et al.  Gamma-Ray Bursts , 2016, Stars and Stellar Processes.

[9]  P. Zarka,et al.  Saturn lightning recorded by Cassini/RPWS in 2004 , 2006 .

[10]  Jason Kastner,et al.  Europa mission update: Beyond payload selection , 2017, 2017 IEEE Aerospace Conference.

[11]  J. Spencer,et al.  Galileo PPR observations of Europa: Hotspot detection limits and surface thermal properties , 2010 .

[12]  Ethan H. Cannon,et al.  A method for efficient Radiation Hardening of multicore processors , 2015, 2015 IEEE Aerospace Conference.

[13]  Paul D. Feldman,et al.  Transient Water Vapor at Europa’s South Pole , 2014, Science.

[14]  M. Mellon,et al.  Possible Nature and Detectability of Endogenic Thermal Anomalies on Europa , 2017 .

[15]  E. Bergeron,et al.  PROBING FOR EVIDENCE OF PLUMES ON EUROPA WITH HST/STIS , 2016, 1609.08215.

[16]  Chein-I Chang,et al.  Anomaly detection and classification for hyperspectral imagery , 2002, IEEE Trans. Geosci. Remote. Sens..

[17]  David R. Thompson,et al.  Onboard Autonomy on the Intelligent Payload Experiment CubeSat Mission , 2017, J. Aerosp. Inf. Syst..

[18]  David R. Thompson,et al.  Surface Sulfur Detection via Remote Sensing and Onboard Classification , 2012, TIST.

[19]  G. Neukum,et al.  Cassini Observes the Active South Pole of Enceladus , 2006, Science.

[20]  Eric Ferguson,et al.  Improving spacecraft design and operability for Europa Clipper through high-fidelity, mission-level modeling and simulation , 2018 .

[21]  B. Butler,et al.  ALMA Thermal Observations of a Proposed Plume Source Region on Europa , 2017, 1708.07922.

[22]  Susana E. Deustua,et al.  Active Cryovolcanism on Europa? , 2017, 1704.04283.

[23]  Kiri Wagstaff,et al.  K-means in space: a radiation sensitivity evaluation , 2009, ICML '09.

[24]  Thomas G. Dietterich,et al.  Guiding Scientific Discovery with Explanations Using DEMUD , 2013, AAAI.

[25]  S. Squyres,et al.  Active dust devils in Gusev crater, Mars: Observations from the Mars Exploration Rover Spirit , 2006 .

[26]  Steve Ankuo Chien,et al.  Agile Science: Using Onboard Autonomy for Primitive Bodies and Deep Space Exploration , 2014 .

[27]  Alfred S. McEwen,et al.  The current martian cratering rate , 2010 .

[28]  C. Hansen,et al.  Enceladus' Water Vapor Plume , 2006, Science.

[29]  David R. Thompson,et al.  Cloud Filtering and Novelty Detection using Onboard Machine Learning for the EO-1 Spacecraft , 2017 .