暂无分享,去创建一个
[1] Balder ten Cate,et al. Hybrid logics , 2007, Handbook of Modal Logic.
[2] Grigori Mints,et al. Indexed systems of sequents and cut-elimination , 1997, J. Philos. Log..
[3] Paul McNamara,et al. Deontic logic , 2006, Logic and the Modalities in the Twentieth Century.
[4] M. Fitting. Proof Methods for Modal and Intuitionistic Logics , 1983 .
[5] Linh Anh Nguyen. Analytic Tableau Systems and Interpolation for the Modal Logics KB, KDB, K5, KD5 , 2001, Stud Logica.
[6] Patrick Blackburn,et al. Terminating Tableau Calculi for Hybrid Logics Extending K , 2009, M4M.
[7] M. Takano. A MODIFIED SUBFORMULA PROPERTY FOR THE MODAL LOGICS K5 AND K5D , 2007 .
[8] Fabio Massacci,et al. Single Step Tableaux for Modal Logics , 2000, Journal of Automated Reasoning.
[9] Francesca Poggiolesi,et al. Gentzen Calculi for Modal Propositional Logic , 2010 .
[10] Rajeev Goré,et al. Tableau Methods for Modal and Temporal Logics , 1999 .
[11] Nuel Belnap,et al. Display logic , 1982, J. Philos. Log..
[12] Fabio Massacci,et al. Strongly Analytic Tableaux for Normal Modal Logics , 1994, CADE.
[13] Sara Negri,et al. Proof Analysis in Modal Logic , 2005, J. Philos. Log..
[14] M. de Rijke,et al. Modal Logic , 2001, Cambridge Tracts in Theoretical Computer Science.
[15] Björn Lellmann,et al. Axioms vs Hypersequent Rules with Context Restrictions: Theory and Applications , 2014, IJCAR.
[16] G. Mints. A Short Introduction to Modal Logic , 1992 .
[17] Francesca Poggiolesi,et al. The Method of Tree-Hypersequents for Modal Propositional Logic , 2009, Towards Mathematical Philosophy.
[18] Franco Montagna,et al. Algebraic and proof-theoretic characterizations of truth stressers for MTL and its extensions , 2010, Fuzzy Sets Syst..
[19] Sara Negri,et al. Structural proof theory , 2001 .
[20] Greg Restall,et al. Proofnets for S5: sequents and circuits for modal logic , 2007 .
[21] II. Mathematisches. Power and Weakness of the Modal Display Calculus , 1996 .
[22] Leandro Chaves Rêgo,et al. Characterizing the NP-PSPACE Gap in the Satisfiability Problem for Modal Logic , 2006, IJCAI.
[23] Heinrich Wansing,et al. Sequent Systems for Modal Logics , 2002 .
[24] Kazuo Matsumoto,et al. Gentzen method in modal calculi. II , 1957 .
[25] Melvin Fitting,et al. Prefixed tableaus and nested sequents , 2012, Ann. Pure Appl. Log..
[26] Dirk Pattinson,et al. Correspondence between Modal Hilbert Axioms and Sequent Rules with an Application to S5 , 2013, TABLEAUX.
[27] Heinrich Wansing,et al. Sequent Calculi for Normal Modal Proposisional Logics , 1994, J. Log. Comput..
[28] Melvin Fitting,et al. Tableau methods of proof for modal logics , 1972, Notre Dame J. Formal Log..
[29] G. Gentzen. Untersuchungen über das logische Schließen. I , 1935 .
[30] Kai Br. Deep Sequent Systems for Modal Logic , 2006 .
[31] T. Braüner. Hybrid Logic and its Proof-Theory , 2010 .
[32] Richard E. Ladner,et al. The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..
[33] A. Avron. The method of hypersequents in the proof theory of propositional non-classical logics , 1996 .
[34] S. C. Kleene,et al. Introduction to Metamathematics , 1952 .
[35] Torben Braüner,et al. First-order modal logic , 2007, Handbook of Modal Logic.