Cellular senescence and protein degradation

Autophagy and the ubiquitin–proteasome pathway (UPP) are the major protein degradation systems in eukaryotic cells. Whereas the former mediate a bulk nonspecific degradation, the UPP allows a rapid degradation of specific proteins. Both systems have been shown to play a role in tumorigenesis, and the interest in developing therapeutic agents inhibiting protein degradation is steadily growing. However, emerging data point to a critical role for autophagy in cellular senescence, an established tumor suppressor mechanism. Recently, a selective protein degradation process mediated by the UPP was also shown to contribute to the senescence phenotype. This process is tightly regulated by E3 ubiquitin ligases, deubiquitinases, and several post-translational modifications of target proteins. Illustrating the complexity of UPP, more than 600 human genes have been shown to encode E3 ubiquitin ligases, a number which exceeds that of the protein kinases. Nevertheless, our knowledge of proteasome-dependent protein degradation as a regulated process in cellular contexts such as cancer and senescence remains very limited. Here we discuss the implications of protein degradation in senescence and attempt to relate this function to the protein degradation pattern observed in cancer cells.

[1]  R. Pearson,et al.  Targeting the nucleolus for cancer intervention. , 2014, Biochimica et biophysica acta.

[2]  G. Ferbeyre,et al.  ERKs in cancer: friends or foes? , 2014, Cancer research.

[3]  M. Narita,et al.  Cellular senescence and its effector programs , 2014, Genes & development.

[4]  J. Sharpe,et al.  Senescence Is a Developmental Mechanism that Contributes to Embryonic Growth and Patterning , 2013, Cell.

[5]  A. Rodríguez-Baeza,et al.  Programmed Cell Senescence during Mammalian Embryonic Development , 2013, Cell.

[6]  P. Dent,et al.  Mitochondrial Localized Stat3 Promotes Breast Cancer Growth via Phosphorylation of Serine 727* , 2013, The Journal of Biological Chemistry.

[7]  L. Tafforeau,et al.  The complexity of human ribosome biogenesis revealed by systematic nucleolar screening of Pre-rRNA processing factors. , 2013, Molecular cell.

[8]  Soyoung Lee,et al.  Synthetic lethal metabolic targeting of cellular senescence in cancer therapy , 2013, Nature.

[9]  M. Blagosklonny,et al.  MEK drives cyclin D1 hyperelevation during geroconversion , 2013, Cell Death and Differentiation.

[10]  Peter D. Adams,et al.  Lysosome-mediated processing of chromatin in senescence , 2013, The Journal of cell biology.

[11]  T. Hofmann,et al.  SUMO regulates proteasome-dependent degradation of FLASH/Casp8AP2 , 2013, Cell cycle.

[12]  Songshu Meng,et al.  YAP/TEAD-mediated transcription controls cellular senescence. , 2013, Cancer research.

[13]  M. Murphy The HSP70 family and cancer. , 2013, Carcinogenesis.

[14]  A. Riera,et al.  An ORC/Cdc6/MCM2-7 complex is formed in a multistep reaction to serve as a platform for MCM double-hexamer assembly. , 2013, Molecular cell.

[15]  T. Shlomi,et al.  A key role for mitochondrial gatekeeper pyruvate dehydrogenase in oncogene-induced senescence , 2013, Nature.

[16]  Tak W. Mak,et al.  Mule/Huwe1/Arf-BP1 suppresses Ras-driven tumorigenesis by preventing c-Myc/Miz1-mediated down-regulation of p21 and p15. , 2013, Genes & development.

[17]  Frédérick A. Mallette,et al.  Tumor suppressor activity of the ERK/MAPK pathway by promoting selective protein degradation. , 2013, Genes & development.

[18]  R. Okuyama,et al.  Opposing functions of Fbxw7 in keratinocyte growth, differentiation and skin tumorigenesis mediated through negative regulation of c-Myc and Notch , 2013, Oncogene.

[19]  Darjus F. Tschaharganeh,et al.  Non-Cell-Autonomous Tumor Suppression by p53 , 2013, Cell.

[20]  I. Arinze,et al.  Trafficking of the Transcription Factor Nrf2 to Promyelocytic Leukemia-Nuclear Bodies , 2013, The Journal of Biological Chemistry.

[21]  S. Deb,et al.  The ubiquitin ligase CHIP regulates c-Myc stability and transcriptional activity , 2013, Oncogene.

[22]  R. Mantovani,et al.  Targeting the Y/CCAAT box in cancer: YB-1 (YBX1) or NF-Y? , 2013, Cell Death and Differentiation.

[23]  J. Campisi Aging, cellular senescence, and cancer. , 2013, Annual review of physiology.

[24]  M. Blagosklonny Hypoxia, MTOR and autophagy , 2013, Autophagy.

[25]  G. Wahl,et al.  MDM2, MDMX and p53 in oncogenesis and cancer therapy , 2013, Nature Reviews Cancer.

[26]  H. Farin,et al.  Tbx2 Controls Lung Growth by Direct Repression of the Cell Cycle Inhibitor Genes Cdkn1a and Cdkn1b , 2013, PLoS genetics.

[27]  J. Fitzpatrick,et al.  Human telomeres are tethered to the nuclear envelope during postmitotic nuclear assembly. , 2012, Cell reports.

[28]  N. B. Sepuri,et al.  The Import of the Transcription Factor STAT3 into Mitochondria Depends on GRIM-19, a Component of the Electron Transport Chain , 2012, The Journal of Biological Chemistry.

[29]  Zhao Jungang,et al.  FBXW7‐mediated degradation of CCDC6 is impaired by ATM during DNA damage response in lung cancer cells , 2012 .

[30]  S. Andò,et al.  CDK inhibitors (p16/p19/p21) induce senescence and autophagy in cancer-associated fibroblasts, “fueling” tumor growth via paracrine interactions, without an increase in neo-angiogenesis , 2012, Cell cycle.

[31]  S. Prasanth,et al.  Orc2 protects ORCA from ubiquitin-mediated degradation , 2012, Cell cycle.

[32]  Junyue Cao,et al.  Proteotoxic stress of cancer: Implication of the heat‐shock response in oncogenesis , 2012, Journal of cellular physiology.

[33]  I. Benjamin,et al.  The heat shock transcription factor Hsf1 is downregulated in DNA damage–associated senescence, contributing to the maintenance of senescence phenotype , 2012, Aging cell.

[34]  A. Gudkov,et al.  Hypoxia suppresses conversion from proliferative arrest to cellular senescence , 2012, Proceedings of the National Academy of Sciences.

[35]  E. Lapi,et al.  Autophagic activity dictates the cellular response to oncogenic RAS , 2012, Proceedings of the National Academy of Sciences.

[36]  S. Lowe,et al.  The atypical E2F family member E2F7 couples the p53 and RB pathways during cellular senescence. , 2012, Genes & development.

[37]  P. Vogt,et al.  Attenuation of TORC1 signaling delays replicative and oncogenic RAS-induced senescence , 2012, Cell cycle.

[38]  Kailash Gulshan,et al.  Proteolytic Degradation of the Yap1 Transcription Factor Is Regulated by Subcellular Localization and the E3 Ubiquitin Ligase Not4* , 2012, The Journal of Biological Chemistry.

[39]  G. Wilczynski,et al.  Curcumin induces permanent growth arrest of human colon cancer cells: Link between senescence and autophagy , 2012, Mechanisms of Ageing and Development.

[40]  M. Gorospe,et al.  RNA-binding protein nucleolin in disease , 2012, RNA biology.

[41]  H. Horlings,et al.  Abrogation of BRAFV600E-induced senescence by PI3K pathway activation contributes to melanomagenesis. , 2012, Genes & development.

[42]  M. Hande,et al.  Oncogene-induced telomere dysfunction enforces cellular senescence in human cancer precursor lesions , 2012, The EMBO journal.

[43]  F. D. D. Fagagna,et al.  Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation , 2012, Nature Cell Biology.

[44]  D. Sabatini,et al.  mTOR Signaling in Growth Control and Disease , 2012, Cell.

[45]  Chi V Dang,et al.  MYC on the Path to Cancer , 2012, Cell.

[46]  T. Lamark,et al.  Aggrephagy: Selective Disposal of Protein Aggregates by Macroautophagy , 2012, International journal of cell biology.

[47]  P. Pandolfi,et al.  Translation-dependent mechanisms lead to PML upregulation and mediate oncogenic K-RAS-induced cellular senescence , 2012, EMBO molecular medicine.

[48]  F. D. D. Fagagna,et al.  Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation , 2012, Nature Cell Biology.

[49]  M. Blagosklonny Cell cycle arrest is not yet senescence, which is not just cell cycle arrest: terminology for TOR-driven aging , 2012, Aging.

[50]  Xiaojuan Du,et al.  Transcriptional Repressor NIR Functions in the Ribosome RNA Processing of Both 40S and 60S Subunits , 2012, PloS one.

[51]  R. Hill,et al.  Subversion of autophagy by Kaposi's sarcoma-associated herpesvirus impairs oncogene-induced senescence. , 2012, Cell host & microbe.

[52]  P. Faou,et al.  Tom34: a cytosolic cochaperone of the Hsp90/Hsp70 protein complex involved in mitochondrial protein import. , 2012, Biochimica et biophysica acta.

[53]  Kamini Singh,et al.  Autophagy-dependent senescence in response to DNA damage and chronic apoptotic stress , 2012, Autophagy.

[54]  A. Shelling,et al.  YB-1, the E2F pathway, and regulation of tumor cell growth. , 2012, Journal of the National Cancer Institute.

[55]  A. Dejean,et al.  Physical and functional interaction between PML and TBX2 in the establishment of cellular senescence , 2012, The EMBO journal.

[56]  Clara Correia-Melo,et al.  Telomeres are favoured targets of a persistent DNA damage response in ageing and stress-induced senescence , 2012, Nature Communications.

[57]  P. Salomoni,et al.  Role of the promyelocytic leukaemia protein in cell death regulation , 2012, Cell Death and Disease.

[58]  T. Luedde,et al.  Senescence surveillance of pre-malignant hepatocytes limits liver cancer development , 2011, Nature.

[59]  Masaaki Komatsu,et al.  Autophagy: Renovation of Cells and Tissues , 2011, Cell.

[60]  S. Hatakeyama,et al.  TRIM proteins and cancer , 2011, Nature Reviews Cancer.

[61]  Xiaowo Wang,et al.  Control of the senescence-associated secretory phenotype by NF-κB promotes senescence and enhances chemosensitivity. , 2011, Genes & development.

[62]  Yahui Kong,et al.  Oxidative Stress, Mitochondrial Dysfunction, and Aging , 2011, Journal of signal transduction.

[63]  Kwok-Kin Wong,et al.  Exploiting cancer cell vulnerabilities to develop a combination therapy for ras-driven tumors. , 2011, Cancer cell.

[64]  A. Weissman,et al.  RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis , 2011, Nature Reviews Cancer.

[65]  J. Guan,et al.  Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. , 2011, Genes & development.

[66]  Scott E. Kern,et al.  Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis , 2011, Nature.

[67]  C. Meisinger,et al.  Signaling at the gate: Phosphorylation of the mitochondrial protein import machinery , 2011, Cell cycle.

[68]  K. Bille,et al.  Senescent cells develop a PARP-1 and nuclear factor-{kappa}B-associated secretome (PNAS). , 2011, Genes & development.

[69]  Simon Tavaré,et al.  Spatial Coupling of mTOR and Autophagy Augments Secretory Phenotypes , 2011, Science.

[70]  E. Gonos,et al.  CHIP E3 ligase regulates mammalian senescence by modulating the levels of oxidized proteins , 2011, Mechanisms of Ageing and Development.

[71]  Keiji Tanaka,et al.  Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells , 2011, The Journal of cell biology.

[72]  Y. Eishi,et al.  Autophagy-deficient mice develop multiple liver tumors. , 2011, Genes & development.

[73]  Rugang Zhang,et al.  Activation of the PIK3CA/AKT pathway suppresses senescence induced by an activated RAS oncogene to promote tumorigenesis. , 2011, Molecular cell.

[74]  Seamus J. Martin,et al.  Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. , 2011, Molecular cell.

[75]  Marc Liesa,et al.  Pancreatic cancers require autophagy for tumor growth. , 2011, Genes & development.

[76]  H. Coller,et al.  Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. , 2011, Genes & development.

[77]  R. Hannan,et al.  Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. , 2011, Cancer research.

[78]  Lan Huang,et al.  Oxidative Stress-Mediated Regulation of Proteasome Complexes* , 2011, Molecular & Cellular Proteomics.

[79]  Y. Shiloh,et al.  KAP1 depletion increases PML nuclear body number in concert with ultrastructural changes in chromatin , 2011, Cell cycle.

[80]  J. Campisi,et al.  DNA-SCARS: distinct nuclear structures that sustain damage-induced senescence growth arrest and inflammatory cytokine secretion , 2011, Journal of Cell Science.

[81]  James Lowe,et al.  Ubiquitin-like protein conjugation and the ubiquitin–proteasome system as drug targets , 2010, Nature Reviews Drug Discovery.

[82]  D. Peeper,et al.  The essence of senescence. , 2010, Genes & development.

[83]  Dan Liu,et al.  Genome-wide YFP Fluorescence Complementation Screen Identifies New Regulators for Telomere Signaling in Human Cells* , 2010, Molecular & Cellular Proteomics.

[84]  L. Corcos,et al.  Cotranscriptional exon skipping in the genotoxic stress response , 2010, Nature Structural &Molecular Biology.

[85]  K. Prasanth,et al.  A WD-repeat protein stabilizes ORC binding to chromatin. , 2010, Molecular cell.

[86]  Maojun Yang,et al.  MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. , 2010, Molecular cell.

[87]  Andrea Cocito,et al.  Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements. , 2010, Molecular cell.

[88]  D. Pisano,et al.  Mammalian Rap1 controls telomere function and gene expression through binding to telomeric and extratelomeric sites , 2010, Nature Cell Biology.

[89]  J. Manfredi The Mdm2-p53 relationship evolves: Mdm2 swings both ways as an oncogene and a tumor suppressor. , 2010, Genes & development.

[90]  Jing Wang,et al.  Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence , 2010, Nature.

[91]  M. Cole,et al.  Myc protein is stabilized by suppression of a novel E3 ligase complex in cancer cells. , 2010, Genes & development.

[92]  M. Sherman Major heat shock protein Hsp72 controls oncogene‐induced senescence , 2010, Annals of the New York Academy of Sciences.

[93]  Yasunori Sato,et al.  Autophagy mediates the process of cellular senescence characterizing bile duct damages in primary biliary cirrhosis , 2010, Laboratory Investigation.

[94]  J. Rutka,et al.  The ARF tumor suppressor controls ribosome biogenesis by regulating the RNA polymerase I transcription factor TTF-I. , 2010, Molecular cell.

[95]  Vahid Shahrezaei,et al.  The scaffold protein Ste5 directly controls a switch-like mating decision in yeast , 2010, Nature.

[96]  D. G. Pestov,et al.  Mammalian DEAD Box Protein Ddx51 Acts in 3′ End Maturation of 28S rRNA by Promoting the Release of U8 snoRNA , 2010, Molecular and Cellular Biology.

[97]  Huafeng Zhang,et al.  N4BP1 is a newly identified nucleolar protein that undergoes SUMO-regulated polyubiquitylation and proteasomal turnover at promyelocytic leukemia nuclear bodies , 2010, Journal of Cell Science.

[98]  Michael Ruogu Zhang,et al.  Dissecting the Unique Role of the Retinoblastoma Tumor Suppressor during Cellular Senescence , 2022 .

[99]  H. Park,et al.  DDB2, an Essential Mediator of Premature Senescence , 2010, Molecular and Cellular Biology.

[100]  G. Celli,et al.  Loss of Rap1 Induces Telomere Recombination in the Absence of NHEJ or a DNA Damage Signal , 2010, Science.

[101]  J. Campisi,et al.  The senescence-associated secretory phenotype: the dark side of tumor suppression. , 2010, Annual review of pathology.

[102]  M. Henriksson,et al.  Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation , 2009, Proceedings of the National Academy of Sciences.

[103]  P. Baumann,et al.  Human RAP1 inhibits non‐homologous end joining at telomeres , 2009, The EMBO journal.

[104]  N. Sonenberg,et al.  p53-dependent translational control of senescence and transformation via 4E-BPs. , 2009, Cancer cell.

[105]  Jeannie T. Lee,et al.  Mst1 and Mst2 maintain hepatocyte quiescence and suppress hepatocellular carcinoma development through inactivation of the Yap1 oncogene. , 2009, Cancer cell.

[106]  K. Kurokawa,et al.  Genome-Organizing Factors Top2 and Hmo1 Prevent Chromosome Fragility at Sites of S phase Transcription , 2009, Cell.

[107]  M. Scheffner,et al.  E6AP promotes the degradation of the PML tumor suppressor , 2009, Cell Death and Differentiation.

[108]  D. Levy,et al.  Mitochondrial STAT3 Supports Ras-Dependent Oncogenic Transformation , 2009, Science.

[109]  M. Blagosklonny,et al.  Rapamycin decelerates cellular senescence , 2009, Cell cycle.

[110]  G. Ferbeyre,et al.  Mitochondrial Dysfunction Contributes to Oncogene-Induced Senescence , 2009, Molecular and Cellular Biology.

[111]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[112]  P. Dimroth,et al.  Essentials for ATP synthesis by F1F0 ATP synthases. , 2009, Annual review of biochemistry.

[113]  M. Serrano,et al.  Rplp1 bypasses replicative senescence and contributes to transformation. , 2009, Experimental cell research.

[114]  Linda Greensmith,et al.  Induction of heat shock proteins for protection against oxidative stress. , 2009, Advanced drug delivery reviews.

[115]  D. Hernandez-Verdun,et al.  Fibrillarin and Nop56 interact before being co-assembled in box C/D snoRNPs. , 2009, Experimental cell research.

[116]  Simon Tavaré,et al.  Autophagy mediates the mitotic senescence transition. , 2009, Genes & development.

[117]  M. Barbacid,et al.  Cell cycle, CDKs and cancer: a changing paradigm , 2009, Nature Reviews Cancer.

[118]  Y. Kotake,et al.  DDB1-CUL4 and MLL1 mediate oncogene-induced p16INK4a activation. , 2009, Cancer research.

[119]  L. Romanova,et al.  Critical Role of Nucleostemin in Pre-rRNA Processing* , 2009, Journal of Biological Chemistry.

[120]  F. Hartl,et al.  Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3 , 2009, The EMBO journal.

[121]  P. Fawcett,et al.  Function of Mitochondrial Stat3 in Cellular Respiration , 2009, Science.

[122]  P. Pandolfi,et al.  PML, YAP, and p73 are components of a proapoptotic autoregulatory feedback loop. , 2008, Molecular cell.

[123]  J. Moolman-Smook,et al.  RBBP6 interacts with multifunctional protein YB-1 through its RING finger domain, leading to ubiquitination and proteosomal degradation of YB-1. , 2008, Journal of molecular biology.

[124]  J. Richter,et al.  CPEB regulation of human cellular senescence, energy metabolism, and p53 mRNA translation. , 2008, Genes & development.

[125]  Shusen Zheng,et al.  Analysis of ABCG2 expression and side population identifies intrinsic drug efflux in the HCC cell line MHCC-97L and its modulation by Akt signaling. , 2008, Carcinogenesis.

[126]  Judith Campisi,et al.  Senescence-Associated Secretory Phenotypes Reveal Cell-Nonautonomous Functions of Oncogenic RAS and the p53 Tumor Suppressor , 2008, PLoS biology.

[127]  T. Waldman,et al.  Heat Shock Protein Hsp72 Controls Oncogene-Induced Senescence Pathways in Cancer Cells , 2008, Molecular and Cellular Biology.

[128]  T. Giordano,et al.  C-MYC overexpression is required for continuous suppression of oncogene-induced senescence in melanoma cells , 2008, Oncogene.

[129]  J. St-Germain,et al.  Involvement of PML nuclear bodies in CBP degradation through the ubiquitin-proteasome pathway , 2008, Epigenetics.

[130]  Tomoki Chiba,et al.  PML Activates Transcription by Protecting HIPK2 and p300 from SCFFbx3-Mediated Degradation , 2008, Molecular and Cellular Biology.

[131]  J. Westermarck,et al.  Identification of nucleolar effects in JNK‐deficient cells , 2008, FEBS letters.

[132]  S. Lowe,et al.  Senescence of Activated Stellate Cells Limits Liver Fibrosis , 2008, Cell.

[133]  Wengong Wang,et al.  CSIG Inhibits PTEN Translation in Replicative Senescence , 2008, Molecular and Cellular Biology.

[134]  Hidde L. Ploegh,et al.  The known unknowns of antigen processing and presentation , 2008, Nature Reviews Immunology.

[135]  Aaron Ciechanover,et al.  The HECT family of E3 ubiquitin ligases: multiple players in cancer development. , 2008, Cancer cell.

[136]  Min Sung Kim,et al.  Frameshift mutation of UVRAG, an autophagy-related gene, in gastric carcinomas with microsatellite instability. , 2008, Human pathology.

[137]  J. Diffley,et al.  Topoisomerase II inactivation prevents the completion of DNA replication in budding yeast. , 2008, Molecular cell.

[138]  Jonathan Melamed,et al.  Chemokine Signaling via the CXCR2 Receptor Reinforces Senescence , 2008, Cell.

[139]  D. Peeper,et al.  Oncogene-Induced Senescence Relayed by an Interleukin-Dependent Inflammatory Network , 2008, Cell.

[140]  T. Finkel,et al.  Free radicals and senescence. , 2008, Experimental cell research.

[141]  R. Morimoto,et al.  Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. , 2008, Genes & development.

[142]  Eduardo Sontag,et al.  Transcriptional control of human p53-regulated genes , 2008, Nature Reviews Molecular Cell Biology.

[143]  J. Tazi,et al.  A novel role for PA28gamma-proteasome in nuclear speckle organization and SR protein trafficking. , 2008, Molecular biology of the cell.

[144]  A. Polotskaia,et al.  Lipid mediators of autophagy in stress-induced premature senescence of endothelial cells. , 2008, American journal of physiology. Heart and circulatory physiology.

[145]  Michael R. Green,et al.  Oncogenic BRAF Induces Senescence and Apoptosis through Pathways Mediated by the Secreted Protein IGFBP7 , 2008, Cell.

[146]  Chia-Yi Hsu,et al.  Chromatin tethering effects of hNopp140 are involved in the spatial organization of nucleolus and the rRNA gene transcription , 2008, Journal of biomedical science.

[147]  B. Clurman,et al.  FBW7 ubiquitin ligase: a tumour suppressor at the crossroads of cell division, growth and differentiation , 2008, Nature Reviews Cancer.

[148]  John L Cleveland,et al.  Targeting lysosomal degradation induces p53-dependent cell death and prevents cancer in mouse models of lymphomagenesis. , 2008, The Journal of clinical investigation.

[149]  M. Sherman,et al.  Hsp27 modulates p53 signaling and suppresses cellular senescence. , 2007, Cancer research.

[150]  Y. Yen,et al.  Role for KAP1 Serine 824 Phosphorylation and Sumoylation/Desumoylation Switch in Regulating KAP1-mediated Transcriptional Repression* , 2007, Journal of Biological Chemistry.

[151]  T. Hunter The age of crosstalk: phosphorylation, ubiquitination, and beyond. , 2007, Molecular cell.

[152]  Rosa Bernardi,et al.  Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies , 2007, Nature Reviews Molecular Cell Biology.

[153]  Robin Mathew,et al.  Role of autophagy in cancer , 2007, Nature Reviews Cancer.

[154]  Frédérick A. Mallette,et al.  Myc Down-regulation as a Mechanism to Activate the Rb Pathway in STAT5A-induced Senescence* , 2007, Journal of Biological Chemistry.

[155]  N. Mizushima,et al.  Autophagy: process and function. , 2007, Genes & development.

[156]  G. Saretzki,et al.  DNA damage in telomeres and mitochondria during cellular senescence: is there a connection? , 2007, Nucleic acids research.

[157]  T. Taira,et al.  MM-1 facilitates degradation of c-Myc by recruiting proteasome and a novel ubiquitin E3 ligase. , 2007, International journal of oncology.

[158]  J. J. Mul,et al.  Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis , 2007, Nature Cell Biology.

[159]  S. Lindquist,et al.  Heat Shock Factor 1 Is a Powerful Multifaceted Modifier of Carcinogenesis , 2007, Cell.

[160]  John A Tainer,et al.  SUMO‐targeted ubiquitin ligases in genome stability , 2007, The EMBO journal.

[161]  T. Hunter,et al.  Conserved function of RNF4 family proteins in eukaryotes: targeting a ubiquitin ligase to SUMOylated proteins , 2007 .

[162]  A. Fusco,et al.  Involvement of H4(D10S170) protein in ATM-dependent response to DNA damage , 2007, Oncogene.

[163]  Dean W. Felsher,et al.  Cellular senescence is an important mechanism of tumor regression upon c-Myc inactivation , 2007, Proceedings of the National Academy of Sciences.

[164]  Frédérick A. Mallette,et al.  The DNA Damage Signaling Pathway Connects Oncogenic Stress to Cellular Senescence , 2007, Cell cycle.

[165]  Katsuhiko Shirahige,et al.  Top1- and Top2-mediated topological transitions at replication forks ensure fork progression and stability and prevent DNA damage checkpoint activation. , 2007, Genes & development.

[166]  C. López-Otín,et al.  Tissue-specific Autophagy Alterations and Increased Tumorigenesis in Mice Deficient in Atg4C/Autophagin-3* , 2007, Journal of Biological Chemistry.

[167]  S. Minucci,et al.  PML4 induces differentiation by Myc destabilization , 2007, Oncogene.

[168]  P. Baumann,et al.  A RAP1/TRF2 complex inhibits nonhomologous end-joining at human telomeric DNA ends. , 2007, Molecular cell.

[169]  T. Kirkwood,et al.  Mitochondrial Dysfunction Accounts for the Stochastic Heterogeneity in Telomere-Dependent Senescence , 2007, PLoS biology.

[170]  M. Sherman,et al.  High levels of heat shock protein Hsp72 in cancer cells suppress default senescence pathways. , 2007, Cancer research.

[171]  Carlos Cordon-Cardo,et al.  Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas , 2007, Nature.

[172]  Stefani N. Thomas,et al.  Doxorubicin Down-regulates Krüppel-associated Box Domain-associated Protein 1 Sumoylation That Relieves Its Transcription Repression on p21WAF1/CIP1 in Breast Cancer MCF-7 Cells* , 2007, Journal of Biological Chemistry.

[173]  Lingjun Meng,et al.  Multiple controls regulate nucleostemin partitioning between nucleolus and nucleoplasm , 2006, Journal of Cell Science.

[174]  Dimitris Kletsas,et al.  Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints , 2006, Nature.

[175]  Aaron Bensimon,et al.  Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication , 2006, Nature.

[176]  O. Pereira-smith,et al.  p53 is preferentially recruited to the promoters of growth arrest genes p21 and GADD45 during replicative senescence of normal human fibroblasts. , 2006, Cancer research.

[177]  R. Bernards,et al.  Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence , 2006, Nature Cell Biology.

[178]  B. Oh,et al.  Autophagic and tumour suppressor activity of a novel Beclin1-binding protein UVRAG , 2006, Nature Cell Biology.

[179]  A. Mikecz The nuclear ubiquitin-proteasome system. , 2006 .

[180]  K. Nakayama,et al.  Ubiquitin ligases: cell-cycle control and cancer , 2006, Nature Reviews Cancer.

[181]  P. Evans,et al.  The triage of damaged proteins: degradation by the ubiquitin‐proteasome pathway or repair by molecular chaperones , 2006, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[182]  A. von Mikecz,et al.  Proteasomes degrade proteins in focal subdomains of the human cell nucleus , 2005, Journal of Cell Science.

[183]  S. Lindquist,et al.  HSP90 and the chaperoning of cancer , 2005, Nature Reviews Cancer.

[184]  Jiandong Chen,et al.  MDM2 interaction with nuclear corepressor KAP1 contributes to p53 inactivation , 2005, The EMBO journal.

[185]  T. Lange,et al.  Shelterin: the protein complex that shapes and safeguards human telomeres , 2005 .

[186]  T. Ley,et al.  YB-1 Is Important for Late-Stage Embryonic Development, Optimal Cellular Stress Responses, and the Prevention of Premature Senescence , 2005, Molecular and Cellular Biology.

[187]  C. Sherr,et al.  Sumoylation induced by the Arf tumor suppressor: a p53-independent function. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[188]  Thomas Nyström,et al.  Role of oxidative carbonylation in protein quality control and senescence , 2005, The EMBO journal.

[189]  Keith W. Vance,et al.  Tbx2 is overexpressed and plays an important role in maintaining proliferation and suppression of senescence in melanomas. , 2005, Cancer research.

[190]  K. Helin,et al.  Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. , 2005, Genes & development.

[191]  M. Davies,et al.  The oxidative environment and protein damage. , 2005, Biochimica et biophysica acta.

[192]  C. Epstein,et al.  CuZnSOD deficiency leads to persistent and widespread oxidative damage and hepatocarcinogenesis later in life , 2005, Oncogene.

[193]  J. Lawrence,et al.  c‐Myc localization within the nucleus: Evidence for association with the PML nuclear body , 2004, Journal of cellular biochemistry.

[194]  Keiichi I Nakayama,et al.  VHL-box and SOCS-box domains determine binding specificity for Cul2-Rbx1 and Cul5-Rbx2 modules of ubiquitin ligases. , 2004, Genes & development.

[195]  P. Jansen-Dürr,et al.  Senescence-associated changes in respiration and oxidative phosphorylation in primary human fibroblasts. , 2004, The Biochemical journal.

[196]  Rosa Bernardi,et al.  PML regulates p53 stability by sequestering Mdm2 to the nucleolus , 2004, Nature Cell Biology.

[197]  P. Pandolfi,et al.  Ubiquitin-dependent Degradation of p73 Is Inhibited by PML , 2004, The Journal of experimental medicine.

[198]  John M Sedivy,et al.  Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). , 2004, Molecular cell.

[199]  K. Nakayama,et al.  Phosphorylation‐dependent degradation of c‐Myc is mediated by the F‐box protein Fbw7 , 2004, The EMBO journal.

[200]  B. Clurman,et al.  The Fbw7 tumor suppressor regulates glycogen synthase kinase 3 phosphorylation-dependent c-Myc protein degradation , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[201]  Tom Moss,et al.  At the crossroads of growth control; making ribosomal RNA. , 2004, Current opinion in genetics & development.

[202]  P. Pandolfi,et al.  PML is a direct p53 target that modulates p53 effector functions. , 2004, Molecular cell.

[203]  P. Heinrich,et al.  STAT3 is enriched in nuclear bodies , 2004, Journal of Cell Science.

[204]  A. Goldberg,et al.  Protein degradation and protection against misfolded or damaged proteins , 2003, Nature.

[205]  W. Zwerschke,et al.  Metabolic analysis of senescent human fibroblasts reveals a role for AMP in cellular senescence. , 2003, The Biochemical journal.

[206]  N. Carter,et al.  A DNA damage checkpoint response in telomere-initiated senescence , 2003, Nature.

[207]  E. Wagner,et al.  AP-1: a double-edged sword in tumorigenesis , 2003, Nature Reviews Cancer.

[208]  David Hawke,et al.  Tumor suppressor ARF degrades B23, a nucleolar protein involved in ribosome biogenesis and cell proliferation. , 2003, Molecular cell.

[209]  L. Guarente,et al.  Superoxide Dismutase 1 Knock-down Induces Senescence in Human Fibroblasts* , 2003, Journal of Biological Chemistry.

[210]  C. Homer,et al.  The Y-box-binding Protein, YB1, Is a Potential Negative Regulator of the p53 Tumor Suppressor* , 2003, Journal of Biological Chemistry.

[211]  T. Lange,et al.  DNA Damage Foci at Dysfunctional Telomeres , 2003, Current Biology.

[212]  Masashi Narita,et al.  Reversal of human cellular senescence: roles of the p53 and p16 pathways , 2003, The EMBO journal.

[213]  David L. Spector,et al.  Nuclear speckles: a model for nuclear organelles , 2003, Nature Reviews Molecular Cell Biology.

[214]  J. Magaud,et al.  Association of increased autophagic inclusions labeled for β-galactosidase with fibroblastic aging , 2003, Experimental Gerontology.

[215]  Zhi-xiang Xu,et al.  PML Colocalizes with and Stabilizes the DNA Damage Response Protein TopBP1 , 2003, Molecular and Cellular Biology.

[216]  K. Nakayama,et al.  The F-box protein Skp2 participates in c-Myc proteosomal degradation and acts as a cofactor for c-Myc-regulated transcription. , 2003, Molecular cell.

[217]  G. Demartino,et al.  Intracellular localization of proteasomes. , 2003, The international journal of biochemistry & cell biology.

[218]  S. Kim,et al.  Skp2 regulates Myc protein stability and activity. , 2003, Molecular cell.

[219]  Einar Hallberg,et al.  Accumulation of c-Myc and proteasomes at the nucleoli of cells containing elevated c-Myc protein levels , 2003, Journal of Cell Science.

[220]  A. Kawasaki,et al.  Opposing effects of PML and PML/RARα on STAT3 activity , 2003 .

[221]  K. Nakayama,et al.  U-box proteins as a new family of ubiquitin ligases. , 2003, Biochemical and biophysical research communications.

[222]  Stanley N Cohen,et al.  Senescence-specific gene expression fingerprints reveal cell-type-dependent physical clustering of up-regulated chromosomal loci , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[223]  B. Blencowe,et al.  Structure and function of the PWI motif: a novel nucleic acid-binding domain that facilitates pre-mRNA processing. , 2003, Genes & development.

[224]  Jakob W. Risch,et al.  Subcellular recruitment of fibrillarin to nucleoplasmic proteasomes: implications for processing of a nucleolar autoantigen. , 2002, Molecular biology of the cell.

[225]  M. Carmo-Fonseca,et al.  Clastosome: a subtype of nuclear body enriched in 19S and 20S proteasomes, ubiquitin, and protein substrates of proteasome. , 2002, Molecular biology of the cell.

[226]  JAMES C. Wang,et al.  Cellular roles of DNA topoisomerases: a molecular perspective , 2002, Nature Reviews Molecular Cell Biology.

[227]  S. Lowe,et al.  Oncogenic ras and p53 Cooperate To Induce Cellular Senescence , 2002, Molecular and Cellular Biology.

[228]  J. Mattick,et al.  Isolation and characterization of a new nucleolar protein, Nrap, that is conserved from yeast to humans , 2002, Genes to cells : devoted to molecular & cellular mechanisms.

[229]  Charles J. Sherr,et al.  The INK4a/ARF network in tumour suppression , 2001, Nature Reviews Molecular Cell Biology.

[230]  A. Ciechanover,et al.  The Nuclear Ubiquitin-Proteasome System Degrades MyoD* , 2001, The Journal of Biological Chemistry.

[231]  Paul Freemont,et al.  Role of Promyelocytic Leukemia (Pml) Sumolation in Nuclear Body Formation, 11s Proteasome Recruitment, and as2O3-Induced Pml or Pml/Retinoic Acid Receptor α Degradation , 2001, The Journal of experimental medicine.

[232]  K. Davies Degradation of oxidized proteins by the 20S proteasome. , 2001, Biochimie.

[233]  L. Szekely,et al.  Proteins associated with the promyelocytic leukemia gene product (PML)-containing nuclear body move to the nucleolus upon inhibition of proteasome-dependent protein degradation. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[234]  Marc J. van de Vijver,et al.  Senescence bypass screen identifies TBX2, which represses Cdkn2a (p19ARF) and is amplified in a subset of human breast cancers , 2000, Nature Genetics.

[235]  A. Cuervo,et al.  Age-related Decline in Chaperone-mediated Autophagy* , 2000, The Journal of Biological Chemistry.

[236]  S. Lowe,et al.  PML is induced by oncogenic ras and promotes premature senescence. , 2000, Genes & development.

[237]  J. Diffley,et al.  Uninterrupted MCM2-7 function required for DNA replication fork progression. , 2000, Science.

[238]  T. Lange,et al.  Identification of Human Rap1 Implications for Telomere Evolution , 2000, Cell.

[239]  E. Koonin,et al.  The U box is a modified RING finger — a common domain in ubiquitination , 2000, Current Biology.

[240]  Y. Yang,et al.  Conserved composition of mammalian box H/ACA and box C/D small nucleolar ribonucleoprotein particles and their interaction with the common factor Nopp140. , 2000, Molecular biology of the cell.

[241]  P. Thomas,et al.  Activity and Regulation of the Centrosome-associated Proteasome* , 2000, The Journal of Biological Chemistry.

[242]  H. Hibshoosh,et al.  Induction of autophagy and inhibition of tumorigenesis by beclin 1 , 1999, Nature.

[243]  P. Petronini,et al.  Attenuated expression of 70-kDa heat shock protein in WI-38 human fibroblasts during aging in vitro. , 1999, Experimental cell research.

[244]  D. Shelton,et al.  Microarray analysis of replicative senescence , 1999, Current Biology.

[245]  P. Sharp,et al.  The SRm160/300 splicing coactivator is required for exon-enhancer function. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[246]  Min Goo Lee,et al.  Dynamic Association of Proteasomal Machinery with the Centrosome , 1999, The Journal of cell biology.

[247]  V. Ferrans,et al.  Ras Proteins Induce Senescence by Altering the Intracellular Levels of Reactive Oxygen Species* , 1999, The Journal of Biological Chemistry.

[248]  E. Wagner,et al.  Control of cell cycle progression by c-Jun is p53 dependent. , 1999, Genes & development.

[249]  R. Johnson,et al.  c‐Jun regulates cell cycle progression and apoptosis by distinct mechanisms , 1999, The EMBO journal.

[250]  D. Wynford‐Thomas Cellular senescence and cancer , 1999, The Journal of pathology.

[251]  P. Sharp,et al.  A coactivator of pre-mRNA splicing. , 1998, Genes & development.

[252]  G. Peters,et al.  Inhibitors of cyclin-dependent kinases induce features of replicative senescence in early passage human diploid fibroblasts , 1998, Current Biology.

[253]  E. Stadtman,et al.  Protein Oxidation in Aging, Disease, and Oxidative Stress* , 1997, The Journal of Biological Chemistry.

[254]  Wenyi Wei,et al.  Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. , 1997, Science.

[255]  D. Botstein,et al.  DNA topoisomerase II must act at mitosis to prevent nondisjunction and chromosome breakage , 1989, Molecular and cellular biology.

[256]  G. Rodrigueziriarte,et al.  [PROTEINS AND CANCER. I]. , 1963, Revista clinica espanola.

[257]  L. Ovchinnikov,et al.  YB‐1 protein: functions and regulation , 2014, Wiley interdisciplinary reviews. RNA.

[258]  R. Gerardy-Schahn,et al.  Reduction of STAT3 expression induces mitochondrial dysfunction and autophagy in cardiac HL-1 cells. , 2013, European journal of cell biology.

[259]  Jun Tang,et al.  FBXW7-mediated degradation of CCDC6 is impaired by ATM during DNA damage response in lung cancer cells. , 2012, FEBS letters.

[260]  K. Hofmann,et al.  SUMO playing tag with ubiquitin. , 2012, Trends in biochemical sciences.

[261]  A. Shelling,et al.  YB-1 , the E 2 F Pathway , and Regulation of Tumor Cell Growth , 2012 .

[262]  B. Rodenko,et al.  Fluorescence-based proteasome activity profiling. , 2012, Methods in molecular biology.

[263]  J. Avruch,et al.  Mst 1 and Mst 2 Maintain Hepatocyte Quiescence and Suppress Hepatocellular Carcinoma Development through Inactivation of the Yap 1 Oncogene , 2011 .

[264]  Anne-Marie Mes-Masson,et al.  Regulation of E2Fs and senescence by PML nuclear bodies. , 2011, Genes & development.

[265]  K. Hofmann,et al.  Sumoylation as a signal for polyubiquitylation and proteasomal degradation. , 2010, Sub-cellular biochemistry.

[266]  K. Guan,et al.  A coordinated phosphorylation by Lats and CK1 regulates YAP stability through SCF(beta-TRCP). , 2010, Genes & development.

[267]  Y. Kotake,et al.  DDB 1-CUL 4 and MLL 1 Mediate Oncogene-Induced p 16 INK 4 a Activation , 2009 .

[268]  O. Cuvier,et al.  the SM-phase transition A topoisomerase II-dependent mechanism for resetting replicons at , 2008 .

[269]  F. d’Adda di Fagagna Living on a break: cellular senescence as a DNA-damage response. , 2008, Nature reviews. Cancer.

[270]  Frédérick A. Mallette,et al.  The DNA damage signaling pathway is a critical mediator of oncogene-induced senescence. , 2007, Genes & development.

[271]  Raymond J. Deshaies,et al.  Function and regulation of cullin–RING ubiquitin ligases , 2005, Nature Reviews Molecular Cell Biology.

[272]  A. Kawasaki,et al.  Opposing effects of PML and PML/RAR alpha on STAT3 activity. , 2003, Blood.

[273]  D. Ganem,et al.  PHD domains and E3 ubiquitin ligases: viruses make the connection. , 2003, Trends in cell biology.

[274]  P. Cole,et al.  Down-Regulation of p 300 / CBP Histone Acetyltransferase Activates a Senescence Checkpoint in Human Melanocytes 1 , 2002 .

[275]  P. Thomas,et al.  Interferon gamma regulates accumulation of the proteasome activator PA28 and immunoproteasomes at nuclear PML bodies. , 2001, Journal of cell science.

[276]  P. Sharp,et al.  The SRm160/300 splicing coactivator subunits. , 2000, RNA.

[277]  A. Goldberg,et al.  Degradation of cell proteins and the generation of MHC class I-presented peptides. , 1999, Annual review of immunology.

[278]  P. Fawcett,et al.  Function of Mitochondrial Stat 3 in Cellular Respiration , 2022 .