Stanislaw M. Ulam's contributions to theoretical theory

S. M. Ulam's contributions to biology are surveyed. The survey covers cellular automata theory, population biology, Fermi-Pasta-Ulam results, pattern recognition, and sequence similarity.

[1]  A. I.,et al.  Neural Field Continuum Limits and the Structure–Function Partitioning of Cognitive–Emotional Brain Networks , 2023, Biology.

[2]  C. J. Everett,et al.  Multiplicative Systems: I. , 1948, Proceedings of the National Academy of Sciences of the United States of America.

[3]  C. J. Everett,et al.  Multiplicative Systems in Several Variables. Part I , 1948 .

[4]  E. F. Moore Machine Models of Self-Reproduction , 1962 .

[5]  T. E. Harris,et al.  The Theory of Branching Processes. , 1963 .

[6]  P. Stein,et al.  NON-LINEAR TRANSFORMATION STUDIES ON ELECTRONIC COMPUTERS , 1964 .

[7]  John von Neumann,et al.  Theory Of Self Reproducing Automata , 1967 .

[8]  S. M. Ulam,et al.  RECURSIVELY DEFINED GEOMETRICAL OBJECTS AND PATTERNS OF GROWTH. , 1967 .

[9]  E. F. Codd,et al.  Cellular automata , 1968 .

[10]  Jan Mycielski,et al.  On the pairing process and the notion of genealogical distance , 1969 .

[11]  A. Rényi,et al.  On a new law of large numbers , 1970 .

[12]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[13]  S. M. Ulam Some Combinatorial Problems Studied Experimentally on Computing Machines , 1972 .

[14]  Joseph Kahane,et al.  On a Class of Stochastic Pairing Processes and the Mycielski-Ulam Notions of Genealogical Distance , 1972, J. Comb. Theory, Ser. A.

[15]  METRICS IN BIOLOGY, AN INTRODUCTION. , 1972 .

[16]  S M Ulam,et al.  Some ideas and prospects in biomathematics. , 1972, Annual review of biophysics and bioengineering.

[17]  P. Sellers On the Theory and Computation of Evolutionary Distances , 1974 .

[18]  Peter H. Sellers,et al.  An Algorithm for the Distance Between Two Finite Sequences , 1974, J. Comb. Theory, Ser. A.

[19]  W. A. Beyer,et al.  A molecular sequence metric and evolutionary trees , 1974 .

[20]  David Sankoff,et al.  Longest common subsequences of two random sequences , 1975, Advances in Applied Probability.

[21]  J. T. Butler,et al.  The vector string descriptor as a tool in the analysis of cellular automata systems , 1977 .

[22]  Joseph G. Deken Some limit results for longest common subsequences , 1979, Discret. Math..

[23]  Peter H. Sellers,et al.  The Theory and Computation of Evolutionary Distances: Pattern Recognition , 1980, J. Algorithms.

[24]  G. Lamb Elements of soliton theory , 1980 .

[25]  H. A. Pohl Do cells in a reproductive state exhibit a fermi-pasta-ulam-fröhlich resonance and emit electromagnetic radiation? , 1980 .

[26]  S. Ulam On the operations of pair production, transmutations, and generalized random walk , 1980 .

[27]  H. Keng,et al.  Applications of number theory to numerical analysis , 1981 .

[28]  Michael J. Steele,et al.  Long Common Subsequences and the Proximity of two Random Strings. , 1982 .

[29]  Michael S. Waterman,et al.  General methods of sequence comparison , 1984 .

[30]  Tommaso Toffoli,et al.  Cellular automata : proceedings of an interdisciplinary workshop, Los Alamos, New Mexico 87545, USA, March 7-11, 1983 , 1984 .

[31]  Solitons in biological molecules , 1985 .

[32]  S. Ulam,et al.  Some elementary attempts at numerical modeling of problems concerning rates of evolutionary processes , 1986 .