Green Imidazolium Ionics-From Truly Sustainable Reagents to Highly Functional Ionic Liquids.

We report the synthesis of task-specific imidazolium ionic compounds and ionic liquids with key functionalities of organic molecules from electro-, polymer-, and coordination chemistry. Such products are highly functional and potentially suitable for technology applications even though they are formed without elaborate reactions and from cheap and potentially green reagents. We further demonstrate the versatility of the used synthetic approach by introducing different functional and green counterions to the formed ionic liquids directly during the synthesis or after metathesis reactions. The influence of different cation structures and different anions on the thermal and electrochemical properties of the resulting ionic liquids is discussed. Our goal is to make progress towards economically competitive and sustainable task-specific ionic liquids.

[1]  Huiling Li,et al.  A feasible process for furfural production from the pre-hydrolysis liquor of corncob via biochar catalysts in a new biphasic system. , 2016, Bioresource technology.

[2]  Wenquan Zhang,et al.  Towards Safer Rocket Fuels: Hypergolic Imidazolylidene-Borane Compounds as Replacements for Hydrazine Derivatives. , 2016, Chemistry.

[3]  Katsuyo Thornton,et al.  Electrochemical Stability Window of Imidazolium-Based Ionic Liquids as Electrolytes for Lithium Batteries. , 2016, The journal of physical chemistry. B.

[4]  J. Ngila,et al.  Modification of electrospun polyacrylonitrile nanofibers with EDTA for the removal of Cd and Cr ions from water effluents , 2016 .

[5]  D. Macfarlane,et al.  Ionic liquid electrolytes for reversible magnesium electrochemistry. , 2016, Chemical communications.

[6]  W. Dehaen,et al.  Halogen-free synthesis of symmetrical 1,3-dialkylimidazolium ionic liquids using non-enolisable starting materials , 2016 .

[7]  H. Kawanami,et al.  Reductive amination of furfural to furfurylamine using aqueous ammonia solution and molecular hydrogen: an environmentally friendly approach , 2016 .

[8]  D. Buttry,et al.  Designer Ionic Liquids for Reversible Electrochemical Deposition/Dissolution of Magnesium. , 2016, Journal of the American Chemical Society.

[9]  Sheng Han,et al.  Heterogeneous Ru-Based Catalysts for One-Pot Synthesis of Primary Amines from Aldehydes and Ammonia , 2015 .

[10]  M. Antonietti,et al.  Renewable pyridinium ionic liquids from the continuous hydrothermal decarboxylation of furfural-amino acid derived pyridinium zwitterions , 2015 .

[11]  Donald J. Siegel,et al.  Electrochemistry of magnesium electrolytes in ionic liquids for secondary batteries. , 2014, ACS applied materials & interfaces.

[12]  C. Stevens,et al.  Electrochemical Stability of Ionic Liquids: General Influences and Degradation Mechanisms , 2014 .

[13]  M. Antonietti,et al.  Hydrothermal decarboxylation of amino acid derived imidazolium zwitterions: a sustainable approach towards ionic liquids , 2014 .

[14]  Doron Aurbach,et al.  The challenge of developing rechargeable magnesium batteries , 2014 .

[15]  M. Antonietti,et al.  A sustainable route towards imidazolium building blocks based on biomass molecules. , 2013, Chemistry.

[16]  M. Antonietti,et al.  Poly(ionic liquid)s: An update , 2013 .

[17]  C. Liebenow Reversibility of electrochemical magnesium deposition from Grignard solutions , 2013 .

[18]  A. Trummal,et al.  Acidities of strong neutral Brønsted acids in different media , 2013 .

[19]  Shyue Ping Ong,et al.  Electrochemical Windows of Room-Temperature Ionic Liquids from Molecular Dynamics and Density Functional Theory Calculations , 2011 .

[20]  S. Passerini,et al.  Effect of the alkyl group on the synthesis and the electrochemical properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethanesulfonyl)imide ionic liquids , 2009 .

[21]  K. R. Seddon,et al.  Applications of ionic liquids in the chemical industry. , 2008, Chemical Society reviews.

[22]  D. Aurbach,et al.  Progress in nonaqueous magnesium electrochemistry , 2007 .

[23]  Johannes Kreutzer,et al.  Lithium aryloxo magnesiates: an examination of ligand size and donor effects. , 2007, Inorganic chemistry.

[24]  A. Taubert,et al.  Inorganic materials from ionic liquids. , 2007, Dalton transactions.

[25]  A. Lewandowski,et al.  Ionic liquids as electrolytes , 2006 .

[26]  M. Antonietti,et al.  Ionic liquids for the convenient synthesis of functional nanoparticles and other inorganic nanostructures. , 2004, Angewandte Chemie.

[27]  Bernd M. Smarsly,et al.  Ionische Flüssigkeiten für die Synthese funktioneller Nanopartikel und anderer anorganischer Nanostrukturen , 2004 .

[28]  Peter Wasserscheid,et al.  Ionische Flüssigkeiten - neue 'Lösungen' für die Übergangsmetallkatalyse , 2000 .

[29]  P. Wasserscheid,et al.  Ionic Liquids-New "Solutions" for Transition Metal Catalysis. , 2000, Angewandte Chemie.

[30]  Tom Welton,et al.  Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. , 1999, Chemical reviews.

[31]  K. R. Seddon Ionic Liquids for Clean Technology , 1997 .

[32]  D. Rochefort,et al.  Conductivity and Electrochemistry of Ferrocenyl-Imidazolium Redox Ionic Liquids with Different Alkyl Chain Lengths , 2014 .

[33]  Y. Diskin‐Posner,et al.  Direct Synthesis of Secondary Amines From Alcohols and Ammonia Catalyzed by a Ruthenium Pincer Complex , 2014, Catalysis Letters.

[34]  Alessandro Gandini,et al.  The furan/maleimide Diels–Alder reaction: A versatile click–unclick tool in macromolecular synthesis , 2013 .

[35]  J. Dupont,et al.  A Simple and Practical Method for the Preparation and Purity Determination of Halide‐Free Imidazolium Ionic Liquids , 2006 .

[36]  Peter B. Hitchcock,et al.  Hydrogen bonding in imidazolium salts and its implications for ambient-temperature halogenoaluminate(III) ionic liquids , 1995 .