On the solution‐space geometry of random constraint satisfaction problems
暂无分享,去创建一个
Amin Coja-Oghlan | Federico Ricci-Tersenghi | Dimitris Achlioptas | D. Achlioptas | A. Coja-Oghlan | F. Ricci-Tersenghi
[1] M. Mézard,et al. Analytic and Algorithmic Solution of Random Satisfiability Problems , 2002, Science.
[2] Thierry Mora,et al. Clustering of solutions in the random satisfiability problem , 2005, Physical review letters.
[3] Assaf Naor,et al. Rigorous location of phase transitions in hard optimization problems , 2005, Nature.
[4] Lefteris M. Kirousis,et al. Selecting Complementary Pairs of Literals , 2003, Electron. Notes Discret. Math..
[5] L. Kirousis,et al. Approximating the unsatisfiability threshold of random formulas , 1998 .
[6] Alan M. Frieze,et al. Analysis of Two Simple Heuristics on a Random Instance of k-SAT , 1996, J. Algorithms.
[7] Béla Bollobás,et al. Threshold functions , 1987, Comb..
[8] Dimitris Achlioptas,et al. THE THRESHOLD FOR RANDOM k-SAT IS 2k log 2 O(k) , 2004, FOCS 2004.
[9] Yacine Boufkhad,et al. A General Upper Bound for the Satisfiability Threshold of Random r-SAT Formulae , 1997, J. Algorithms.
[10] Andrea Montanari,et al. Gibbs states and the set of solutions of random constraint satisfaction problems , 2006, Proceedings of the National Academy of Sciences.
[11] E. Friedgut. Hunting for sharp thresholds , 2005 .
[12] Olivier Dubois,et al. Typical random 3-SAT formulae and the satisfiability threshold , 2000, SODA '00.
[13] Miklós Simonovits,et al. Supersaturated graphs and hypergraphs , 1983, Comb..
[14] Thierry Mora,et al. Pairs of SAT-assignments in random Boolean formulæ , 2005, Theor. Comput. Sci..
[15] Federico Ricci-Tersenghi,et al. Random Formulas Have Frozen Variables , 2009, SIAM J. Comput..
[16] E. Friedgut,et al. Sharp thresholds of graph properties, and the -sat problem , 1999 .
[17] Lenka Zdeborová,et al. Exhaustive enumeration unveils clustering and freezing in random 3-SAT , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[18] R. Paley,et al. A note on analytic functions in the unit circle , 1932, Mathematical Proceedings of the Cambridge Philosophical Society.