Iterative Substructuring Methods for Spectral Element Discretizations of Elliptic Systems I: Compressible Linear Elasticity

An iterative substructuring method for the system of linear elasticity in three dimensions is introduced and analyzed. The pure displacement formulation for compressible materials is discretized with the spectral element method. The resulting stiffness matrix is symmetric and positive definite. The proposed method provides a domain decomposition preconditioner constructed from local solvers for the interior of each element and for each face of the elements and a coarse, global solver related to the wire basket of the elements. As in the scalar case, the condition number of the preconditioned operator is independent of the number of spectral elements and grows as the square of the logarithm of the spectral degree.

[1]  Weiming Cao,et al.  A preconditioner for the $h$- $p$ version of the finite element method in two dimensions , 1996 .

[2]  Jan Mandel,et al.  A multigrid method for three-dimensional elasticity and algebraic convergence estimates , 1987 .

[3]  Olof B. Widlund,et al.  Iterative Substructuring Methods for Spectral Elements: Problems in Three Dimensions Based on Numerical Quadrature , 1997 .

[4]  Mario A. Casarin,et al.  Quasi-Optimal Schwarz Methods for the Conforming Spectral Element Discretization , 1995 .

[5]  Olof B. Widlund,et al.  Iterative Substructuring Methods for Spectral Element Discretizations of Elliptic Systems. II: Mixed Methods for Linear Elasticity and Stokes Flow , 1999, SIAM J. Numer. Anal..

[6]  Olof B. Widlund,et al.  A Polylogarithmic Bound for an Iterative Substructuring Method for Spectral Elements in Three Dimensions , 1996 .

[7]  Charbel Farhat,et al.  Implicit parallel processing in structural mechanics , 1994 .

[8]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[9]  I. Bica,et al.  Iterative substructuring algorithms for the p-version finite element method for elliptic problems , 1997 .

[10]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[11]  P. Forsyth,et al.  Preconditioned conjugate gradient methods for three-dimensional linear elasticity , 1994 .

[12]  Barry F. Smith,et al.  Schwarz analysis of iterative substructuring algorithms for elliptic problems in three dimensions , 1994 .

[13]  T. A. Zang,et al.  Spectral methods for fluid dynamics , 1987 .

[14]  J. Mandel Balancing domain decomposition , 1993 .

[15]  P. F. Fischer,et al.  An overlapping Schwarz method for spectral element simulation of three-dimensional incompressible flows , 1998 .

[16]  O. Widlund,et al.  Schwarz Methods of Neumann-Neumann Type for Three-Dimensional Elliptic Finite Element Problems , 1993 .

[17]  I. D. Parsons,et al.  The multigrid method in solid mechanics: Part II—Practical applications , 1990 .

[18]  Barry F. Smith A domain decomposition algorithm for elliptic problems in three dimensions , 1990 .

[19]  Jan Mandel,et al.  Iterative solvers by substructuring for the p -version finite element method , 1990 .

[20]  Luca F. Pavarino Courant Domain Decomposition Algorithms for the p-version Finite Element Method for Elliptic Problems , 1992 .

[21]  Ning Hu,et al.  Multi-P Methods: Iterative Algorithms for the P-Version of the Finite Element Analysis , 1995, SIAM J. Sci. Comput..

[22]  Daniele Funaro,et al.  Spectral Elements for Transport-Dominated Equations , 1997, Lecture Notes in Computational Science and Engineering.

[23]  P. Tallec Numerical methods for nonlinear three-dimensional elasticity , 1994 .

[24]  I. Babuska,et al.  Finite Element Analysis , 2021 .

[25]  Mario A. Casarin Schwarz Preconditioners for Spectral and Mortar Finite Element Methods with Applications to Incompressible Fluids , 1996 .

[26]  Barry Smith A Parallel Implementation of an Iterative Substructuring Algorithm for Problems in Three Dimensions , 1993, SIAM J. Sci. Comput..

[27]  J. Pasciak,et al.  The Construction of Preconditioners for Elliptic Problems by Substructuring. , 2010 .

[28]  Xuejun Xu,et al.  Two-level Schwarz methods for Wilson element approximation of elasticity problem , 1997 .

[29]  Susanne C. Brenner A nonconforming mixed multigrid method for the pure traction problem in planar linear elasticity , 1994 .

[30]  P. Tallec Domain decomposition methods in computational mechanics , 1994 .

[31]  O. Widlund,et al.  Iterative substructuring methods for spectral element discretizations of elliptic systems in three dimensions , 2000 .

[32]  I. Babuska,et al.  Locking effects in the finite element approximation of elasticity problems , 1992 .

[33]  S. C. Brenner,et al.  A nonconforming mixed multigrid method for the pure displacement problem in planar linear elasticity , 1993 .

[34]  J. Hall,et al.  The multigrid method in solid mechanics: Part I—Algorithm description and behaviour , 1990 .

[35]  Barry F. Smith,et al.  Domain decomposition algorithms for the partial differential equations of linear elasticity , 1990 .