Temporal convolutional networks for just-in-time design smells prediction using fine-grained software metrics

[1]  Diomidis Spinellis,et al.  An empirical investigation on the relationship between design and architecture smells , 2020, Empirical Software Engineering.

[2]  Mohammad Alshayeb,et al.  Bad Smell Detection Using Machine Learning Techniques: A Systematic Literature Review , 2020 .

[3]  Lerina Aversano,et al.  Investigating on the Relationships between Design Smells Removals and Refactorings , 2020, ICSOFT.

[4]  Jiqiang Liu,et al.  Assessing Optimizer Impact on DNN Model Sensitivity to Adversarial Examples , 2019, IEEE Access.

[5]  Diomidis Spinellis,et al.  On the Feasibility of Transfer-learning Code Smells using Deep Learning , 2019, ArXiv.

[6]  Fabio Palomba,et al.  Fine-grained just-in-time defect prediction , 2019, J. Syst. Softw..

[7]  Diomidis Spinellis,et al.  A survey on software smells , 2018, J. Syst. Softw..

[8]  Vladlen Koltun,et al.  An Empirical Evaluation of Generic Convolutional and Recurrent Networks for Sequence Modeling , 2018, ArXiv.

[9]  Quoc V. Le,et al.  Searching for Activation Functions , 2018, arXiv.

[10]  Nenad Medvidovic,et al.  Architectural-Based Speculative Analysis to Predict Bugs in a Software System , 2016, 2016 IEEE/ACM 38th International Conference on Software Engineering Companion (ICSE-C).

[11]  A. D. Lucia,et al.  When and Why Your Code Starts to Smell Bad , 2017, 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering.

[12]  Mika Mäntylä,et al.  Comparing and experimenting machine learning techniques for code smell detection , 2015, Empirical Software Engineering.

[13]  Ward Whitt,et al.  The Power of Alternative Kolmogorov-Smirnov Tests Based on Transformations of the Data , 2015, ACM Trans. Model. Comput. Simul..

[14]  Houari A. Sahraoui,et al.  A Cooperative Parallel Search-Based Software Engineering Approach for Code-Smells Detection , 2014, IEEE Transactions on Software Engineering.

[15]  Tom Schaul,et al.  Unit Tests for Stochastic Optimization , 2013, ICLR.

[16]  Audris Mockus,et al.  Quantifying the Effect of Code Smells on Maintenance Effort , 2013, IEEE Transactions on Software Engineering.

[17]  Geoffrey E. Hinton,et al.  On the importance of initialization and momentum in deep learning , 2013, ICML.

[18]  Audris Mockus,et al.  A large-scale empirical study of just-in-time quality assurance , 2013, IEEE Transactions on Software Engineering.

[19]  Oscar Nierstrasz,et al.  Incremental Dynamic Updates with First-class Contexts , 2013, J. Object Technol..

[20]  Foutse Khomh,et al.  An exploratory study of the impact of antipatterns on class change- and fault-proneness , 2011, Empirical Software Engineering.

[21]  Yann-Gaël Guéhéneuc,et al.  DECOR: A Method for the Specification and Detection of Code and Design Smells , 2010, IEEE Transactions on Software Engineering.

[22]  Alexander Chatzigeorgiou,et al.  Identification of Move Method Refactoring Opportunities , 2009, IEEE Transactions on Software Engineering.

[23]  Richard Simon,et al.  Bias in error estimation when using cross-validation for model selection , 2006, BMC Bioinformatics.

[24]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[25]  Ramanath Subramanyam,et al.  Empirical Analysis of CK Metrics for Object-Oriented Design Complexity: Implications for Software Defects , 2003, IEEE Trans. Software Eng..

[26]  Yoshua Bengio,et al.  Gradient-Based Optimization of Hyperparameters , 2000, Neural Computation.

[27]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[28]  Jeannette M. Wing,et al.  A behavioral notion of subtyping , 1994, TOPL.

[29]  Jacob Cohen A Coefficient of Agreement for Nominal Scales , 1960 .