On the approximation of the step function by some sigmoid functions

In this note the Hausdorff approximation of the Heaviside step function by several sigmoid functions (log–logistic, transmuted log–logistic and generalized logistic functions) is considered and precise upper and lower bounds for the Hausdorff distance are obtained. Numerical examples, that illustrate our results are given, too.

[1]  Roumen Anguelov,et al.  On the Normed Linear Space of Hausdorff Continuous Functions , 2005, LSSC.

[2]  Sergey Lvin,et al.  A Study of Log‐Logistic Model in Survival Analysis , 1999 .

[3]  Beong In Yun,et al.  APPROXIMATION TO THE CUMULATIVE NORMAL DISTRIBUTION USING HYPERBOLIC TANGENT BASED FUNCTIONS , 2009 .

[4]  Chris P. Tsokos,et al.  On the transmuted extreme value distribution with application , 2009 .

[5]  Roumen Anguelov,et al.  The Set of Hausdorff Continuous Functions— The Largest Linear Space of Interval Functions , 2006, Reliab. Comput..

[6]  Svetoslav Markov,et al.  On the Hausdorff distance between the Heaviside step function and Verhulst logistic function , 2015, Journal of Mathematical Chemistry.

[7]  Kyurkchiev Nikolay,et al.  Sigmoid Functions: Some Approximation and Modelling Aspects , 2015 .

[8]  S. Kotz,et al.  Statistical Size Distributions in Economics and Actuarial Sciences , 2003 .

[9]  Benjamin Gompertz,et al.  XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. F. R. S. &c , 1825, Philosophical Transactions of the Royal Society of London.

[10]  David Collett Modelling Survival Data in Medical Research , 1994 .

[11]  Svetoslav Markov,et al.  On the Approximation of the Cut and Step Functions by Logistic and Gompertz Functions , 2015 .

[12]  William T. Shaw,et al.  The alchemy of probability distributions: beyond Gram-Charlier expansions, and a skew-kurtotic-normal distribution from a rank transmutation map , 2009, 0901.0434.

[13]  B. Gompertz,et al.  On the Nature of the Function Expressive of the Law of Human Mortality , 1825 .

[14]  Renato Spigler,et al.  Approximation results for neural network operators activated by sigmoidal functions , 2013, Neural Networks.

[15]  F. J. Richards A Flexible Growth Function for Empirical Use , 1959 .

[16]  Marianela Carrillo,et al.  A new approach to modelling sigmoidal curves , 2002 .

[17]  Gokarna Aryal,et al.  Transmuted Log-Logistic Distribution , 2013 .

[18]  Svetoslav Markov,et al.  Sigmoidal Functions: Some Computational and Modelling Aspects , 2015 .

[19]  P. Fisk THE GRADUATION OF INCOME DISTRIBUTIONS , 1961 .

[20]  Roumen Anguelov,et al.  Hausdorff Continuous Interval Functions and Approximations , 2014, SCAN.