Sharp Variable Selection of a Sparse Submatrix in a High-Dimensional Noisy Matrix

We observe a $N\times M$ matrix of independent, identically distributed Gaussian random variables which are centered except for elements of some submatrix of size $n\times m$ where the mean is larger than some $a>0$. The submatrix is sparse in the sense that $n/N$ and $m/M$ tend to 0, whereas $n,\, m, \, N$ and $M$ tend to infinity. We consider the problem of selecting the random variables with significantly large mean values. We give sufficient conditions on $a$ as a function of $n,\, m,\,N$ and $M$ and construct a uniformly consistent procedure in order to do sharp variable selection. We also prove the minimax lower bounds under necessary conditions which are complementary to the previous conditions. The critical values $a^*$ separating the necessary and sufficient conditions are sharp (we show exact constants). We note a gap between the critical values $a^*$ for selection of variables and that of detecting that such a submatrix exists given by Butucea and Ingster (2012). When $a^*$ is in this gap, consistent detection is possible but no consistent selector of the corresponding variables can be found.

[1]  I. Johnstone,et al.  Maximum Entropy and the Nearly Black Object , 1992 .

[2]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[3]  C. Klüppelberg,et al.  Modelling Extremal Events , 1997 .

[4]  Yu. I. Ingster,et al.  Nonparametric Goodness-of-Fit Testing Under Gaussian Models , 2002 .

[5]  J. Corcoran Modelling Extremal Events for Insurance and Finance , 2002 .

[6]  D. Donoho,et al.  Higher criticism for detecting sparse heterogeneous mixtures , 2004, math/0410072.

[7]  I. Johnstone,et al.  Adapting to unknown sparsity by controlling the false discovery rate , 2005, math/0505374.

[8]  Yu. I. Ingster,et al.  Detection of a signal of known shape in a multichannel system , 2005 .

[9]  Xiaoming Huo,et al.  Near-optimal detection of geometric objects by fast multiscale methods , 2005, IEEE Transactions on Information Theory.

[10]  Jiashun Jin,et al.  Estimation and Confidence Sets for Sparse Normal Mixtures , 2006, math/0612623.

[11]  G. Lecu'e,et al.  Selection of variables and dimension reduction in high-dimensional non-parametric regression , 2008, 0811.1115.

[12]  J. Lafferty,et al.  Rodeo: Sparse, greedy nonparametric regression , 2008, 0803.1709.

[13]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..

[14]  Andrea Montanari,et al.  Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..

[15]  A. Nobel,et al.  Finding large average submatrices in high dimensional data , 2009, 0905.1682.

[16]  P. Bickel,et al.  SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.

[17]  V. Koltchinskii,et al.  Nuclear norm penalization and optimal rates for noisy low rank matrix completion , 2010, 1011.6256.

[18]  A. Tsybakov,et al.  Estimation of high-dimensional low-rank matrices , 2009, 0912.5338.

[19]  N. Verzelen Minimax risks for sparse regressions: Ultra-high-dimensional phenomenons , 2010, 1008.0526.

[20]  Emmanuel J. Candès,et al.  Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.

[21]  E. Candès,et al.  Global testing under sparse alternatives: ANOVA, multiple comparisons and the higher criticism , 2010, 1007.1434.

[22]  Sivaraman Balakrishnan,et al.  Minimax Localization of Structural Information in Large Noisy Matrices , 2011, NIPS.

[23]  David Gross,et al.  Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.

[24]  A. Dalalyan,et al.  Tight conditions for consistency of variable selection in the context of high dimensionality , 2011, 1106.4293.

[25]  Benjamin Recht,et al.  A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..

[26]  E. Candès,et al.  Detection of an anomalous cluster in a network , 2010, 1001.3209.

[27]  Karim Lounici,et al.  Variable Selection with Exponential Weights and $l_0$-Penalization , 2012, 1208.2635.

[28]  C. Butucea,et al.  Sharp detection of smooth signals in a high-dimensional sparse matrix with indirect observations , 2013, 1301.4660.

[29]  Yu. I. Ingster,et al.  Detection of a sparse submatrix of a high-dimensional noisy matrix , 2011, 1109.0898.

[30]  A. Nobel,et al.  On the maximal size of large-average and ANOVA-fit submatrices in a Gaussian random matrix. , 2010, Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability.

[31]  David E. McNabb,et al.  Introduction to Nonparametric Statistics , 2015 .