Sharp Variable Selection of a Sparse Submatrix in a High-Dimensional Noisy Matrix
暂无分享,去创建一个
[1] I. Johnstone,et al. Maximum Entropy and the Nearly Black Object , 1992 .
[2] Y. Benjamini,et al. Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .
[3] C. Klüppelberg,et al. Modelling Extremal Events , 1997 .
[4] Yu. I. Ingster,et al. Nonparametric Goodness-of-Fit Testing Under Gaussian Models , 2002 .
[5] J. Corcoran. Modelling Extremal Events for Insurance and Finance , 2002 .
[6] D. Donoho,et al. Higher criticism for detecting sparse heterogeneous mixtures , 2004, math/0410072.
[7] I. Johnstone,et al. Adapting to unknown sparsity by controlling the false discovery rate , 2005, math/0505374.
[8] Yu. I. Ingster,et al. Detection of a signal of known shape in a multichannel system , 2005 .
[9] Xiaoming Huo,et al. Near-optimal detection of geometric objects by fast multiscale methods , 2005, IEEE Transactions on Information Theory.
[10] Jiashun Jin,et al. Estimation and Confidence Sets for Sparse Normal Mixtures , 2006, math/0612623.
[11] G. Lecu'e,et al. Selection of variables and dimension reduction in high-dimensional non-parametric regression , 2008, 0811.1115.
[12] J. Lafferty,et al. Rodeo: Sparse, greedy nonparametric regression , 2008, 0803.1709.
[13] Emmanuel J. Candès,et al. Exact Matrix Completion via Convex Optimization , 2009, Found. Comput. Math..
[14] Andrea Montanari,et al. Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..
[15] A. Nobel,et al. Finding large average submatrices in high dimensional data , 2009, 0905.1682.
[16] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[17] V. Koltchinskii,et al. Nuclear norm penalization and optimal rates for noisy low rank matrix completion , 2010, 1011.6256.
[18] A. Tsybakov,et al. Estimation of high-dimensional low-rank matrices , 2009, 0912.5338.
[19] N. Verzelen. Minimax risks for sparse regressions: Ultra-high-dimensional phenomenons , 2010, 1008.0526.
[20] Emmanuel J. Candès,et al. Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.
[21] E. Candès,et al. Global testing under sparse alternatives: ANOVA, multiple comparisons and the higher criticism , 2010, 1007.1434.
[22] Sivaraman Balakrishnan,et al. Minimax Localization of Structural Information in Large Noisy Matrices , 2011, NIPS.
[23] David Gross,et al. Recovering Low-Rank Matrices From Few Coefficients in Any Basis , 2009, IEEE Transactions on Information Theory.
[24] A. Dalalyan,et al. Tight conditions for consistency of variable selection in the context of high dimensionality , 2011, 1106.4293.
[25] Benjamin Recht,et al. A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..
[26] E. Candès,et al. Detection of an anomalous cluster in a network , 2010, 1001.3209.
[27] Karim Lounici,et al. Variable Selection with Exponential Weights and $l_0$-Penalization , 2012, 1208.2635.
[28] C. Butucea,et al. Sharp detection of smooth signals in a high-dimensional sparse matrix with indirect observations , 2013, 1301.4660.
[29] Yu. I. Ingster,et al. Detection of a sparse submatrix of a high-dimensional noisy matrix , 2011, 1109.0898.
[30] A. Nobel,et al. On the maximal size of large-average and ANOVA-fit submatrices in a Gaussian random matrix. , 2010, Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability.
[31] David E. McNabb,et al. Introduction to Nonparametric Statistics , 2015 .