Comprehensive review on material requirements, present status, and future prospects for building-integrated semitransparent photovoltaics (BISTPV)

Photovoltaics (PV) is a potential alternative to the world's quickly depleting fossil fuel and can be a mean of curtailing green-house gas emissions as well. In regions in which there is a shortage of free land and no fossil fuel reserves, building-integrated photovoltaics with an additional attribute of semitransparency (BISTPV) can help to realize sustainable economic growth. The net electricity savings in dwellings and commercial edifices can be substantially enhanced by using BISTPV shrewdly. In addition to building applications, semitransparent (ST) solar cells can be used in yacht hatches, signboards on express-ways, automobiles, electronic displays, and other applications. It is anticipated that in the foreseeable future, dye-sensitized solar cells (DSSCs), amorphous silicon (a-Si:H) solar cells, and chalcopyrite solar cells based BISTPV modules will replace aesthetically repulsive c-Si-based ST modules, which are currently the key player in the BIPV market. DSSCs are superior to a-Si:H and chalcopyrite-based PV in terms of the appropriate choice of dyes, for which wavelengths that have a low eye sensitivity factor can be selectively harnessed. The transparency, or ability to see-through, can be further increased by making use of highly transparent photoanodes and counter electrodes. However, the stability issues that are associated with DSSCs have halted their propagation to the BIPV market. In contrast, ST a-Si:H solar cells have been well developed on a laboratory scale, and ST panels made by various companies are available on the market. Apart from ST DSSCs and a-Si:H solar cells, which have evolved considerably, chalcopyrite STPV has only recently started the journey of its development on a laboratory scale although it has a large potential for BISTPV. Therefore, considerable efforts must be made for it to emerge in the BIPV market. This article will present a detailed review of the material requirements for fabricating ST dye-sensitized-, amorphous silicon (a-Si:H)-, and chalcopyrite-based solar cells, especially for BIPV applications. Furthermore, the present status and future prospects of semitransparent photovoltaics (STPV) and strategies to enhance photocurrent in STPV will also be discussed.

[1]  Dimitrios Hariskos,et al.  An 11.4% efficient polycrystalline thin film solar cell based on CuInS2 with a Cd-free buffer layer , 1996 .

[2]  F. Kong,et al.  Review of Recent Progress in Dye-Sensitized Solar Cells , 2007 .

[3]  Nakita K. Noel,et al.  Anomalous Hysteresis in Perovskite Solar Cells. , 2014, The journal of physical chemistry letters.

[4]  D. Carlson Factors influencing the efficiency of amorphous silicon solar cells , 1980 .

[5]  G. Gordillo,et al.  Synthesis and characterization of Zn(O,OH)S and AgInS2 layers to be used in thin film solar cells , 2010 .

[6]  Aslihan Babayigit,et al.  Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite , 2015 .

[7]  Karen Forberich,et al.  High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. , 2015, Nanoscale.

[8]  Zhang Lan,et al.  High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells , 2008 .

[9]  Andrew Mourant Ready to explode , 2014 .

[10]  Danny H.W. Li,et al.  Energy and cost studies of semi-transparent photovoltaic skylight , 2009 .

[11]  Yasuhiko Takeda,et al.  Outdoor performance of large scale DSC modules , 2004 .

[12]  J. Abushama,et al.  Improved performance in ZnO/CdS/CuGaSe2 thin‐film solar cells , 2003 .

[13]  Kihwan Kim,et al.  Characterization of (AgCu)(InGa)Se$_{\bf 2}$ Absorber Layer Fabricated by a Selenization Process from Metal Precursor , 2013, IEEE Journal of Photovoltaics.

[14]  Uwe Rau,et al.  Electronic properties of Cu(In,Ga)Se2 heterojunction solar cells–recent achievements, current understanding, and future challenges , 1999 .

[15]  Yanhong Luo,et al.  Application of carbon materials as counter electrodes of dye-sensitized solar cells , 2007 .

[16]  M. Konagai,et al.  Use of a carbon‐alloyed graded‐band‐gap layer at the p/i interface to improve the photocharacteristics of amorphous silicon alloyed p‐i‐n solar cells prepared by photochemical vapor deposition , 1987 .

[17]  Young Chan Kim,et al.  Compositional engineering of perovskite materials for high-performance solar cells , 2015, Nature.

[18]  Chia-Hua Huang Effects of Ga content on Cu(In,Ga)Se2 solar cells studied by numerical modeling , 2008 .

[19]  Minoru Mizuno,et al.  Semi-transparent PV: Thermal performance, power generation, daylight modelling and energy saving potential in a residential application , 2008 .

[20]  Ken-Tsung Wong,et al.  Microcavity‐Embedded, Colour‐Tuneable, Transparent Organic Solar Cells , 2014, Advanced materials.

[21]  Joshua M. Pearce,et al.  Dependence of open-circuit voltage in hydrogenated protocrystalline silicon solar cells on carrier recombination in p/i interface and bulk regions , 2000 .

[22]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[23]  L. M. Schiavone,et al.  Energy bands of AgInS 2 in the chalcopyrite and orthorhombic structures , 1974 .

[24]  Eray S. Aydil,et al.  Nanowire-based dye-sensitized solar cells , 2005 .

[25]  Changneng Zhang,et al.  Research Progress of the Counter Electrode in Dye-Sensitized Solar Cells , 2010 .

[26]  Christophe Ballif,et al.  Sputtered rear electrode with broadband transparency for perovskite solar cells , 2015 .

[27]  Marika Edoff,et al.  Development of rear surface passivated Cu(In,Ga)Se2 thin film solar cells with nano-sized local rear point contacts , 2013 .

[28]  Seigo Ito,et al.  Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte , 2008 .

[29]  Ruei-Tang Chen,et al.  Design and fabrication of diffusive solar cell window , 2012 .

[30]  Aldo Di Carlo,et al.  Interplay between transparency and efficiency in dye sensitized solar cells. , 2013, Optics express.

[31]  Reiner Klenk,et al.  Efficient CuInS2 solar cells from a rapid thermal process (RTP) , 2001 .

[32]  L. Stolt,et al.  The effect of Ga-grading in CIGS thin film solar cells , 2005 .

[33]  Sang‐Kwon Lee,et al.  Fabrication, and Characteristics of Pin-Type a-SiGe:H Thin-Film Solar Cells with a-Si:H Buffer and Graded Absorption Layer , 2013 .

[34]  Dmitri Golberg,et al.  Inorganic semiconductor nanostructures and their field-emission applications , 2008 .

[35]  Jinwoo Lee,et al.  The Comparison of (Ag,Cu)(In,Ga)Se$_{\bf 2}$ and Cu(In,Ga)Se$_{\bf 2}$ Thin Films Deposited by Three-Stage Coevaporation , 2014, IEEE Journal of Photovoltaics.

[36]  Di Gao,et al.  Multilayer assembly of nanowire arrays for dye-sensitized solar cells. , 2011, Journal of the American Chemical Society.

[37]  Leonardo D. Bonifacio,et al.  Selectively Transparent and Conducting Photonic Crystals , 2010, Advanced materials.

[38]  Akira Yano,et al.  Prototype semi-transparent photovoltaic modules for greenhouse roof applications , 2014 .

[39]  D. Lincot,et al.  Thinning of CIGS solar cells: Part II: Cell characterizations , 2011 .

[40]  M. Edoff,et al.  The Influence of Absorber Thickness on Cu(In,Ga)Se$_{\bf 2}$ Solar Cells With Different Buffer Layers , 2013, IEEE Journal of Photovoltaics.

[41]  C. E. Tracy,et al.  Monolithic, Self‐Powered Photovoltaic‐Electrochromic Coating for Windows , 1998 .

[42]  Valery Shklover,et al.  Nanocrystalline titanium oxide electrodes for photovoltaic applications , 2005 .

[43]  J. Britt,et al.  CIGS Device Stability on Flexible Substrates , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[44]  L. Guo,et al.  Colored hybrid photovoltaics with angle invariance , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[45]  David Worsley,et al.  A Transparent Conductive Adhesive Laminate Electrode for High‐Efficiency Organic‐Inorganic Lead Halide Perovskite Solar Cells , 2014, Advanced materials.

[46]  Kisuk Kang,et al.  Application of transparent dye-sensitized solar cells to building integrated photovoltaic systems , 2011 .

[47]  A. Shah,et al.  Thin‐film silicon solar cell technology , 2004 .

[48]  Sandeep Kumar Pathak,et al.  Lead-free organic–inorganic tin halide perovskites for photovoltaic applications , 2014 .

[49]  José Pérez-Alonso,et al.  Performance analysis and neural modelling of a greenhouse integrated photovoltaic system , 2012 .

[50]  Wenjing Hong,et al.  Transparent graphene/PEDOT–PSS composite films as counter electrodes of dye-sensitized solar cells , 2008 .

[51]  Marco Raugei,et al.  Life cycle impacts and costs of photovoltaic systems: Current state of the art and future outlooks , 2009 .

[52]  Q. Tang,et al.  Bifacial dye-sensitized solar cells: A strategy to enhance overall efficiency based on transparent polyaniline electrode , 2014, Scientific Reports.

[53]  G. Ozin,et al.  See-through amorphous silicon solar cells with selectively transparent and conducting photonic crystal back reflectors for building integrated photovoltaics , 2013 .

[54]  Jaesung Song,et al.  Performance variation of carbon counter electrode based dye-sensitized solar cell , 2008 .

[55]  Takahiko Miyazaki,et al.  Energy savings of office buildings by the use of semi-transparent solar cells for windows , 2005 .

[56]  David K. Benson,et al.  Semi-transparent a-SiC:H solar cells for self-powered photovoltaic-electrochromic devices , 1996 .

[57]  M. Green,et al.  Characterization of 23-percent efficient silicon solar cells , 1990 .

[58]  R. Chittick,et al.  The Preparation and Properties of Amorphous Silicon , 1969 .

[59]  M. Patrini,et al.  Towards CIGS Solar Cells with Reduced Film Thickness: A Study of Optical Properties and of Photonic Structures for Light Trapping , 2012 .

[60]  P. Fath,et al.  Characterization of novel mono- and bifacially active semi-transparent crystalline silicon solar cells , 1999 .

[61]  Kenji Murata,et al.  Development and application of see-through a-Si solar cells , 1993 .

[62]  Sandeep Kumar Pathak,et al.  Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells , 2013, Nature Communications.

[63]  Kihwan Kim,et al.  Backwall superstrate configuration for ultrathin Cu(In,Ga)Se2 solar cells , 2014 .

[64]  Dong Yoon Lee,et al.  Grid type dye-sensitized solar cell module with carbon counter electrode , 2008 .

[65]  Claes G. Granqvist Smart windows and intelligent glass façades , 2002 .

[66]  J. Sites,et al.  Band-gap grading in Cu(In,Ga)Se2 solar cells , 2005 .

[67]  M. Bodegård,et al.  Influence of the Cu(In,Ga)Se2 thickness and Ga grading on solar cell performance , 2003 .

[68]  Tayfun Gokmen,et al.  Solution‐processed Cu(In,Ga)(S,Se)2 absorber yielding a 15.2% efficient solar cell , 2013 .

[69]  Kihwan Kim,et al.  Effect of Reduced Cu(InGa)(SeS) $_{\bm 2}$ Thickness Using Three-Step H $_{\bm 2}$ Se/Ar/H $_{\bm 2}$ S Reaction of Cu–In–Ga Metal Precursor , 2013 .

[70]  G. C. Puente,et al.  Photoluminescence studies of chalcopyrite and orthorhombic AgInS2 thin films deposited by spray pyrolysis technique , 2007 .

[71]  T. Unold,et al.  Efficient CuInS2 solar cells by reactive magnetron sputtering , 2006 .

[72]  Andreas Bauer,et al.  Properties of Cu(In,Ga)Se2 solar cells with new record efficiencies up to 21.7% , 2015 .

[73]  D. J. Cohen,et al.  Characterizing the effects of silver alloying in chalcopyrite CIGS with junction capacitance methods , 2009 .

[74]  L. Kranz,et al.  Flexible Cu(In,Ga)Se2 solar cells with reduced absorber thickness , 2015 .

[75]  Sun Jin Yun,et al.  The Characteristics of a Hydrogenated Amorphous Silicon Semitransparent Solar Cell When Applying n/i Buffer Layers , 2013 .

[76]  Shenghao Wang,et al.  Smooth perovskite thin films and efficient perovskite solar cells prepared by the hybrid deposition method , 2015 .

[77]  Mohammad Khaja Nazeeruddin,et al.  Organohalide Lead Perovskites for Photovoltaic Applications. , 2016, The journal of physical chemistry letters.

[78]  G. Gordillo,et al.  Study of electrical and morphological properties of AgInSe2 thin films grown by co-evaporation , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[79]  Jae Yong Lee,et al.  Decorative power generating panels creating angle insensitive transmissive colors , 2014, Scientific Reports.

[80]  Man Gu Kang,et al.  Manufacturing method for transparent electric windows using dye-sensitized TiO2 solar cells , 2003 .

[81]  Ying Huang,et al.  Building-integrated photovoltaics (BIPV) in architectural design in China , 2011 .

[82]  Long-term stability of low-power dye-sensitised solar cells prepared by industrial methods , 2001 .

[83]  A. Tiwari,et al.  Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications , 2015, Nature Communications.

[84]  Z. Wang,et al.  Improvement of amorphous silicon n-i-p solar cells by incorporating double-layer hydrogenated nanocrystalline silicon structure , 2011 .

[85]  L. Artús,et al.  Experimental evidence of the splitting of the AgGaS2 uppermost valence bands by crystal-field and spin-orbit interaction , 1987 .

[86]  Andreas F. Meyer,et al.  Long‐term stability of dye‐sensitised solar cells , 2001 .

[87]  Peter Fath,et al.  Industrial manufacturing of semitransparent crystalline silicon POWER solar cells , 2002 .

[88]  X. Sheng,et al.  Design and Non‐Lithographic Fabrication of Light Trapping Structures for Thin Film Silicon Solar Cells , 2011, Advanced materials.

[89]  Kihwan Kim,et al.  Improved Performance of Ultrathin Cu(InGa)Se$_{\bf 2}$ Solar Cells With a Backwall Superstrate Configuration , 2014, IEEE Journal of Photovoltaics.

[90]  Toshihiko Tanaka,et al.  Effects of greenhouse photovoltaic array shading on welsh onion growth. , 2012 .

[91]  R. Klenk,et al.  12.6% efficient CdS/Cu(In,Ga)S2-based solar cell with an open circuit voltage of 879 mV prepared by a rapid thermal process , 2011 .

[92]  Q. Tang,et al.  Transmission enhanced photoanodes for efficient dye-sensitized solar cells , 2014 .

[93]  Yasuhiko Takeda,et al.  Degradation analysis of dye-sensitized solar cell module after long-term stability test under outdoor working condition , 2009 .

[94]  Alvaro Marucci,et al.  The Semitransparent Photovoltaic Films for Mediterranean Greenhouse: A New Sustainable Technology , 2012 .

[95]  J. Sites,et al.  Potential of submicrometer thickness Cu(In,Ga)Se2 solar cells , 2005 .

[96]  T. Nakada,et al.  Novel device structure for Cu(In,Ga)Se2 thin film solar cells using transparent conducting oxide back and front contacts , 2004 .

[97]  Trystan Watson,et al.  Efficient, Semitransparent Neutral-Colored Solar Cells Based on Microstructured Formamidinium Lead Trihalide Perovskite. , 2015, The journal of physical chemistry letters.

[98]  Ricardo Rüther,et al.  The strategic siting and the roofing area requirements of building-integrated photovoltaic solar energy generators in urban areas in Brazil , 2008 .

[99]  N. Amin,et al.  Numerical Modelling of Ultra Thin Cu(In,Ga)Se2 Solar Cells , 2012 .

[100]  Shunichiro Ito,et al.  Multi-colored dye-sensitized solar cells , 2004 .

[101]  Thomas Kirchartz,et al.  Organic photovoltaic greenhouses: a unique application for semi-transparent PV? , 2015 .

[102]  A. Carlo,et al.  Efficient Cosensitization Strategy for Dye-Sensitized Solar Cells , 2012 .

[103]  K. Lim,et al.  Ultrathin boron-doped microcrystalline silicon as a novel constant band gap buffer inserted at the p-a-SiC:H/i-a-Si:H interface of amorphous silicon solar cells , 2000 .

[104]  P. Lechner,et al.  PV for buildings , 2004 .

[105]  L. Mansfield,et al.  Wide bandgap Cu(In,Ga)Se2 solar cells with improved energy conversion efficiency , 2012 .

[106]  R. Klenk,et al.  Efficient thin-film solar cells prepared by a sequential process , 1998 .

[107]  Nripan Mathews,et al.  Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells. , 2014, ACS nano.

[108]  Alain Goriely,et al.  Neutral color semitransparent microstructured perovskite solar cells. , 2014, ACS nano.

[109]  A. Hidalgo,et al.  Motivators for adoption of photovoltaic systems at grid parity: A case study from Southern Germany , 2015 .

[110]  Toshihiko Tanaka,et al.  Shading and electrical features of a photovoltaic array mounted inside the roof of an east–west oriented greenhouse , 2010 .

[111]  D. Hariskos,et al.  Compositional investigation of potassium doped Cu(In,Ga)Se2 solar cells with efficiencies up to 20.8% , 2014 .

[112]  Hyung-Jo Jung,et al.  A feasibility study on a building's window system based on dye-sensitized solar cells , 2014 .

[113]  D. Weaire,et al.  Prospects for the use of amorphous semiconductors in solar energy conversion , 1978, Nature.

[114]  G. Ozin,et al.  Selectively transparent and conducting photonic crystal rear-contacts for thin-film silicon-based building integrated photovoltaics. , 2011, Optics express.

[115]  W. Choi,et al.  Dye-sensitized solar cells using graphene-based carbon nano composite as counter electrode , 2011 .

[116]  Leone Spiccia,et al.  Ultra-thin high efficiency semitransparent perovskite solar cells , 2015 .

[117]  Jun-Tae Kim,et al.  Characteristics of DSSC Panels with Silicone Encapsulant , 2015 .

[118]  H.J.J. Janssen,et al.  Performance of a concentrated photovoltaic energy system with static linear Fresnel lenses , 2011 .

[119]  Anna Maltabarow Xiamen Antai New Energy Technology Co. Ltd. - Solar Power UK Events , 2012 .

[120]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[121]  Jinli Yang,et al.  Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. , 2015, ACS nano.

[122]  David K. Benson,et al.  Design goals and challenges for a photovoltaic-powered electrochromic window covering , 1995 .

[123]  Henry J. Snaith,et al.  Stability of Metal Halide Perovskite Solar Cells , 2015 .

[124]  Marika Edoff,et al.  Technological and economical aspects on the influence of reduced Cu(In,Ga)Se2 thickness and Ga grading for co-evaporated Cu(In,Ga)Se2 modules , 2011 .

[125]  Timothy D Heidel,et al.  High-Efficiency Organic Solar Concentrators for Photovoltaics , 2008, Science.

[126]  D. Fang,et al.  A flexible polypyrrole-coated fabric counter electrode for dye-sensitized solar cells , 2014 .

[127]  Gong-Ru Lin,et al.  Semi-transparent Si-rich SixC1−x p–i–n photovoltaic solar cell grown by hydrogen-free PECVD , 2014 .

[128]  N. Manyala,et al.  Graphene: Synthesis, Transfer, and Characterization for Dye-Sensitized Solar Cells Applications , 2013 .

[129]  D. Hariskos,et al.  New world record efficiency for Cu(In,Ga)Se2 thin‐film solar cells beyond 20% , 2011 .

[130]  Pierluigi Cossari,et al.  Perovskite photovoltachromic cells for building integration , 2015 .

[131]  T. Nakada,et al.  Microstructural and diffusion properties of CIGS thin film solar cells fabricated using transparent conducting oxide back contacts , 2005 .

[132]  Shenghao Wang,et al.  Silver Iodide Formation in Methyl Ammonium Lead Iodide Perovskite Solar Cells with Silver Top Electrodes , 2015 .

[133]  Subba Ramaiah Kodigala Cu(In1−xGax)Se2 and CuIn(Se1−xSx)2 Thin Film Solar Cells , 2010 .

[134]  I. Inagawa,et al.  Characterization of microspherical semi-transparent solar cells and modules , 2007 .

[135]  Jayraj V. Vaghasiya,et al.  Highly efficient one-dimensional ZnO nanowire-based dye-sensitized solar cell using a metal-free, D-π-A-type, carbazole derivative with more than 5% power conversion. , 2014, ACS applied materials & interfaces.

[136]  M. Lux‐Steiner,et al.  Determination of the band gap depth profile of the penternary Cu(In(1−X)GaX)(SYSe(1−Y))2 chalcopyrite from its composition gradient , 2004 .

[137]  Feng Yan,et al.  Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes , 2015, Advanced materials.

[138]  Xingzhong Zhao,et al.  A transparent and stable polypyrrole counter electrode for dye-sensitized solar cell , 2013 .

[139]  S. Yun,et al.  Cu2O thin films as the color-adjusting layer in semi-transparent a-Si:H solar cells , 2013 .

[140]  G. Tulloch,et al.  Light and energy—dye solar cells for the 21st century , 2004 .

[141]  J. Yun,et al.  Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique , 2010 .

[142]  B. Ahn,et al.  Growth of Ultrathin Zn Compound Buffer Layer by a Chemical Bath Deposition for Cu ( In , Ga ) Se2 Solar Cells , 2009 .

[143]  Won-Seok Chae,et al.  Enhanced performance of a dye-sensitized solar cell with an electrodeposited-platinum counter electrode , 2008 .

[144]  Yi Cui,et al.  Nanostructured photon management for high performance solar cells , 2010, 2010 3rd International Nanoelectronics Conference (INEC).

[145]  D. Carlson,et al.  AMORPHOUS SILICON SOLAR CELL , 1976 .

[146]  P. Ku,et al.  Angular selective semi-transparent photovoltaics. , 2012, Optics express.

[147]  Satyen K. Deb,et al.  Stand-alone photovoltaic-powered electrochromic smart window , 2001 .

[148]  R. Scheer,et al.  CuInS2 based thin film solar cell with 10.2% efficiency , 1993 .

[149]  Ruei-Tang Chen,et al.  Transparent solar cell window module , 2010 .

[150]  P. Fiorini,et al.  Optimum band gap for amorphous silicon based solar cells , 1990, IEEE Conference on Photovoltaic Specialists.

[151]  T. Ma,et al.  Platinum-free catalysts as counter electrodes in dye-sensitized solar cells. , 2012, ChemSusChem.

[152]  Y. Hamakawa,et al.  A Semi-Transparent Solar Cell Using a-SiC , 1989 .

[153]  Jong-ho Yoon,et al.  Practical application of building integrated photovoltaic (BIPV) system using transparent amorphous silicon thin-film PV module , 2011 .

[154]  B. To,et al.  Processing and Properties of Sub-Micron CIGS Solar Cells , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[155]  Min Ho Lee,et al.  Stable semi-transparent CH3NH3PbI3 planar sandwich solar cells , 2015 .

[156]  K. Yoshino,et al.  Structural, electrical and optical properties of AgInS2 thin films grown by thermal evaporation method , 2005 .

[157]  Thomas Feurer,et al.  High-Efficiency Polycrystalline Thin Film Tandem Solar Cells. , 2015, The journal of physical chemistry letters.

[158]  M. Grätzel,et al.  A hole-conductor–free, fully printable mesoscopic perovskite solar cell with high stability , 2014, Science.

[159]  R. Street,et al.  Hydrogenated amorphous silicon: Index , 1991 .

[160]  John A Rogers,et al.  Ultrathin silicon solar microcells for semitransparent, mechanically flexible and microconcentrator module designs. , 2008, Nature materials.

[161]  Angular selective backreflector for semitransparent photovoltaics , 2012 .

[162]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[163]  A. Jäger-Waldau,et al.  In2O3/CdS/CuInS2 thin-film solar cell with 9.7% efficiency , 1994 .

[164]  Richard R. Lunt,et al.  Transparent, near-infrared organic photovoltaic solar cells for window and energy-scavenging applications , 2011 .

[165]  A. Meyer,et al.  The photovoltaic stability of, bis(isothiocyanato)rlutheniurn(II)‐bis‐2, 2′bipyridine‐4, 4′‐dicarboxylic acid and related sensitizers , 1997 .

[166]  Se Jin Park,et al.  Printable, wide band-gap chalcopyrite thin films for power generating window applications , 2014, Scientific Reports.

[167]  Sun Jin Yun,et al.  Performances of amorphous silicon and silicon germanium semi-transparent solar cells , 2013 .

[168]  T. Ma,et al.  Recent Progress of Counter Electrode Catalysts in Dye-Sensitized Solar Cells , 2014 .

[169]  Shenghao Wang,et al.  Fabrication of semi-transparent perovskite films with centimeter-scale superior uniformity by the hybrid deposition method , 2014 .

[170]  Yan Hao,et al.  Cobalt(II/III) redox electrolyte in ZnO nanowire-based dye-sensitized solar cells. , 2013, ACS applied materials & interfaces.

[171]  M. S. Keshner,et al.  Study of Potential Cost Reductions Resulting from Super-Large-Scale Manufacturing of PV Modules: Final Subcontract Report, 7 August 2003--30 September 2004 , 2004 .

[172]  W. S. Hobson,et al.  Ga2O3 films for electronic and optoelectronic applications , 1995 .

[173]  U. Singh,et al.  Progress in Polycrystalline Thin-Film Cu(In,Ga) Solar Cells , 2010 .

[174]  Xudong Yang,et al.  High‐Performance, Transparent, Dye‐Sensitized Solar Cells for See‐Through Photovoltaic Windows , 2014 .

[175]  Tae Kyu Ahn,et al.  Hysteresis-less inverted CH3NH3PbI3 planar perovskite hybrid solar cells with 18.1% power conversion efficiency , 2015 .

[176]  T. Ramachandra,et al.  Spatial mapping of renewable energy potential , 2007 .

[177]  C. Ballif,et al.  Organic-inorganic halide perovskite/crystalline silicon four-terminal tandem solar cells. , 2015, Physical chemistry chemical physics : PCCP.

[178]  F. Finger,et al.  A-Si:H buffer in a-SiGe:H solar cells , 2002 .

[179]  P. Fath,et al.  Mechanical wafer engineering for semitransparent polycrystalline silicon solar cells , 1994 .

[180]  Plasmonic backscattering enhanced inverted photovoltaics , 2011 .

[181]  J. Noh,et al.  Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. , 2013, Nano letters.

[182]  A. Jäger-Waldau,et al.  Properties of CuInS2 thin films grown by a two-step process without H2S , 1997 .

[183]  Richard R. Lunt,et al.  Theoretical limits for visibly transparent photovoltaics , 2012 .

[184]  T. Meng,et al.  MoO3 back contact for CuInSe2-based thin film solar cells , 2013 .

[185]  Back Surface Recombination Effect on the Ultra- Thin CIGS Solar Cells by SCAPS , 2014 .

[186]  S. Yun,et al.  Semi-Transparent Amorphous Silicon Solar Cells Using a Thin p-Si Layer and a Buffer Layer , 2013 .

[187]  I. Aksay,et al.  Graphene materials and their use in dye-sensitized solar cells. , 2014, Chemical reviews.

[188]  Yun Sun,et al.  Structure, morphology and properties of thinned Cu(In, Ga)Se2 films and solar cells , 2012 .

[189]  Luis Camacho,et al.  High efficiency single-junction semitransparent perovskite solar cells , 2014 .

[190]  Jayanta Deb Mondol,et al.  Grid parity analysis of solar photovoltaic systems in Europe , 2014 .

[191]  Tjerk H. Reijenga,et al.  Photovoltaics in an architectural context , 2004 .

[192]  A. Stavrides,et al.  Semi-Transparent Amorphous Silicon Solar Cells on Inexpensive Plastic Substrates , 2006 .

[193]  S. Yanagida,et al.  Application of polypyrrole as a counter electrode for a dye-sensitized solar cell , 2011 .

[194]  C. Youn,et al.  Temperature dependence of band gap and photocurrent properties for the AgInS2 epilayers grown by hot wall epitaxy , 2002 .

[195]  Hongxing Yang,et al.  Study on thermal performance of semi-transparent building-integrated photovoltaic glazings , 2008 .

[196]  G. Teeter,et al.  Wide-bandgap (AgCu)(InGa)Se2 absorber layers deposited by three-stage co-evaporation , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[197]  Tongfa Liu,et al.  Metal electrode-free perovskite solar cells with transfer-laminated conducting polymer electrode. , 2015, Optics express.

[198]  C. Bechinger,et al.  Improved Monolithic Photovoltaic-Electrochromic Devices Incorporating an a-SiC:H Solar Cell , 1996 .

[199]  Danny H.W. Li,et al.  Energy and cost analysis of semi-transparent photovoltaic in office buildings , 2009 .

[200]  P. Liska,et al.  Fabrication of thin film dye sensitized solar cells with solar to electric power conversion efficiency over 10 , 2008 .

[201]  Jason B. Baxter,et al.  Commercialization of dye sensitized solar cells: Present status and future research needs to improve efficiency, stability, and manufacturing , 2012 .

[202]  Frederik C. Krebs,et al.  Optimizations of large area quasi-solid-state dye-sensitized solar cells , 2006 .

[203]  T. Nakada,et al.  Novel Wide-Band-Gap Ag(In 1-x Ga x )Se 2 Thin Film Solar Cells , 2005 .

[204]  Alberto Salleo,et al.  Semi-transparent perovskite solar cells for tandems with silicon and CIGS , 2015 .

[205]  Feng Guo,et al.  In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells. , 2011, ACS nano.

[206]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[207]  David K. Benson,et al.  Approaches for large-area a-SiC:H photovoltaic-powered electrochromic window coatings , 2000 .

[208]  Susanne Siebentritt,et al.  The electronic structure of chalcopyrites—bands, point defects and grain boundaries , 2010 .

[209]  Deo Prasad,et al.  Designing with Solar Power: A Source Book for Building Integrated Photovoltaics (BiPV) , 2005 .

[210]  Ye Chen,et al.  Thermal and environmental stability of semi-transparent perovskite solar cells for tandems by a solution-processed nanoparticle buffer layer and sputtered ITO electrode , 2016, 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC).

[211]  Sung Jong Yoo,et al.  Tandem dye-sensitized solar cell-powered electrochromic devices for the photovoltaic-powered smart window , 2007 .

[212]  K. S. Shamala,et al.  Studies on optical and dielectric properties of Al2O3 thin films prepared by electron beam evaporation and spray pyrolysis method , 2004 .

[213]  Jianhua Zhang,et al.  All-solution processed semi-transparent perovskite solar cells with silver nanowires electrode , 2016, Nanotechnology.

[214]  Hans Desilvestro,et al.  Long-term stability of dye solar cells , 2011 .

[215]  A. Luque,et al.  Handbook of Photovoltaic Science and Engineering: Luque/Photovoltaic Science and Engineering , 2005 .

[216]  Hui Wang,et al.  Graphene as a counter electrode material for dye-sensitized solar cells , 2012 .

[217]  Bjørn Petter Jelle,et al.  Building integrated photovoltaic products: A state-of-the-art review and future research opportunities , 2012 .

[218]  Chih-Wen Liu,et al.  Surface passivation of Cu(In,Ga)Se2 using atomic layer deposited Al2O3 , 2012 .

[219]  P. M. Sommeling,et al.  Long-term stability testing of dye-sensitized solar cells , 2004 .

[220]  Miro Zeman,et al.  Relation between the open-circuit voltage and the band gap of absorber and buffer layers in a-Si:H solar cells , 2008 .

[221]  Basile F. E. Curchod,et al.  Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. , 2014, Nature chemistry.

[222]  B. Rech,et al.  Potential of amorphous silicon for solar cells , 1999 .

[223]  Andreas Henemann,et al.  BIPV: Built-in solar energy , 2008 .