Snell's Law for Spin Waves.

We report the experimental observation of Snell's law for magnetostatic spin waves in thin ferromagnetic Permalloy films by imaging incident, refracted, and reflected waves. We use a thickness step as the interface between two media with different dispersion relations. Since the dispersion relation for magnetostatic waves in thin ferromagnetic films is anisotropic, deviations from the isotropic Snell's law known in optics are observed for incidence angles larger than 25° with respect to the interface normal between the two magnetic media. Furthermore, we can show that the thickness step modifies the wavelength and the amplitude of the incident waves. Our findings open up a new way of spin wave steering for magnonic applications.

[1]  Adekunle Olusola Adeyeye,et al.  A reconfigurable waveguide for energy-efficient transmission and local manipulation of information in a nanomagnetic device. , 2016, Nature nanotechnology.

[2]  K. Schultheiss,et al.  Magnetic domain walls as reconfigurable spin-wave nanochannels. , 2016, Nature nanotechnology.

[3]  D. Allwood,et al.  Towards graded-index magnonics: Steering spin waves in magnonic networks , 2015 .

[4]  S. Murakami,et al.  Micromagnetic simulation of spin wave propagation in a ferromagnetic film with different thicknesses , 2015 .

[5]  K. Guslienko,et al.  Influence of magnetic surface anisotropy on spin wave reflection from the edge of ferromagnetic film , 2015, 1504.02668.

[6]  F. García-Sánchez,et al.  The design and verification of MuMax3 , 2014, 1406.7635.

[7]  J. Pearson,et al.  Realization of a spin-wave multiplexer , 2014, Nature Communications.

[8]  S. Murakami,et al.  Real-time observation of Snell’s law for spin waves in thin ferromagnetic films , 2014 .

[9]  V. Bessonov,et al.  An antidot array as an edge for total non-reflection of spin waves in yttrium iron garnet films , 2014 .

[10]  D. Grundler,et al.  Omnidirectional spin-wave nanograting coupler , 2013, Nature Communications.

[11]  J. Pearson,et al.  Spin waves turning a corner , 2012 .

[12]  Y. Dadoenkova,et al.  Huge Goos-Hänchen effect for spin waves: A promising tool for study magnetic properties at interfaces , 2012 .

[13]  M. Madami,et al.  Spatial control of spin-wave modes in Ni80Fe20 antidot lattices by embedded Co nanodisks , 2011 .

[14]  M. Kostylev,et al.  Excitation of short-wavelength spin waves in magnonic waveguides , 2011 .

[15]  Sang-Koog Kim,et al.  REFRACTIVE INDEX AND SNELL'S LAW FOR DIPOLE-EXCHANGE SPIN WAVES IN RESTRICTED GEOMETRY , 2011 .

[16]  Andrii V. Chumak,et al.  All-linear time reversal by a dynamic artificial crystal , 2010, Nature communications.

[17]  Sang-Koog Kim,et al.  Negative refraction of dipole-exchange spin waves through a magnetic twin interface in restricted geometry , 2008 .

[18]  M. Kostylev,et al.  Phase-sensitive Brillouin light scattering spectroscopy from spin-wave packets , 2006 .

[19]  S. A. Reshetnyak Refraction of surface spin waves in spatially inhomogeneous ferrodielectrics with biaxial magnetic anisotropy , 2004 .

[20]  S. A. Reshetnyak,et al.  Reflection and refraction of spin waves in uniaxial magnets in the geometrical-optics approximation , 1998 .

[21]  P. Kaboš,et al.  Magnetostatic waves and their application , 1993 .

[22]  A. V. Vashkovskii,et al.  Formation, reflection, and refraction of magnetostatic wave beams , 1988 .

[23]  A. Slavin,et al.  Theory of dipole-exchange spin wave spectrum for ferromagnetic films with mixed exchange boundary conditions , 1986 .

[24]  K. Yasumoto,et al.  A new evaluation of the Goos–Hänchen shift and associated time delay , 1983 .

[25]  Simon Foster,et al.  Optics , 1981, Arch. Formal Proofs.

[26]  Silvia Tacchi,et al.  Chapter Two - Application of Microfocused Brillouin Light Scattering to the Study of Spin Waves in Low-Dimensional Magnetic Systems , 2012 .

[27]  D. Grundler,et al.  Magnonics , 2010 .