The Role and Uses of Technologies in Mathematics Classrooms: Between Challenge and Modus Vivendi

Drawing support from theoretical frameworks, this article analyses the role and uses of technology in the teaching of mathematics, with specific reference to the complexity of integrating technology into teaching. Four aspects are discussed here: the changes that technology brings about in classroom mathematical activity, the difficulties students encounter in solving problems in a technology-rich environment, the evaluation of potential assignments and the creation of conditions appropriate for learning, and the difficulties faced by teachers who use technology in deciding when and how to intervene. This analysis is illustrated by examples taken primarily from dynamic geometry, but similar analyses could be conducted for computerized environments of other kinds.RésuméCet article porte sur le rôle et l’utilisation des technologies, plus spécifiquement sur la complexité de l’intégration des technologies en enseignement des mathématiques, en s’appuyant pour aborder cette question sur certains cadres théoriques. Quatre aspects y sont développés: les changements que provoquent ces technologies sur l’activité mathématique mobilisée à l’école, les difficultés que les élèves rencontrent dans la résolution de problèmes dans un tel environnement, l’analyse des tâches proposées et des conditions propices à un apprentissage, et la complexité de la gestion de l’intervention pour un enseignant qui intègre de telles technologies. Cette analyse est illustrée par des exemples provenant principalement d’un environnement de géométrie dynamique mais des analyses semblables peuvent être conduites dans d’autres types d’environnements informatiques.

[1]  Rossana Falcade Théorie des situations, médiation sémiotique et discussions collectives dans des séquences d'enseignement qui utilisent Cabri-géomètre et qui visent à l'apprentissage des notions de fonction et graphe de fonction , 2006 .

[2]  Jean-Baptiste Lagrange,et al.  L'intégration d'instruments informatiques dans l'enseignement: Une approche par les techniques , 2000 .

[3]  B. Senach Evaluation ergonomique des interfaces homme-machine : une revue de la littérature , 1990 .

[4]  Maria Alessandra Mariotti,et al.  Justifying and Proving in the Cabri Environment , 2002, Int. J. Comput. Math. Learn..

[5]  Alain Birebent Articulation entre la calculatrice et l'approximation décimale dans les calculs numériques de l'enseignement secondaire français. Choix des calculs trigonométriques pour une ingénierie didactique en classe de Première scientifique. , 2001 .

[6]  F. Bellemain,et al.  Specificite de l'organisation d'une sequence d'enseignement lors de l'utilisation de l'ordinateur , 1992 .

[7]  Kaye Stacey,et al.  A Framework for Monitoring Progress and Planning Teaching Towards the Effective Use of Computer Algebra Systems , 2004, Int. J. Comput. Math. Learn..

[8]  B. Jaworski,et al.  Technology in mathematics teaching : a bridge between teaching and learning , 1995 .

[9]  Y. Chevallard L'analyse des pratiques enseignantes en théorie anthropologique du didactique , 1999 .

[10]  Michal Yerushalmy,et al.  Research on the Role of Technological Environments in Algebra Learning and Teaching , 2004 .

[11]  Federica Olivero The proving process within a dynamic geometry environment , 2003 .

[12]  B. Schwarz,et al.  The role of contradiction and uncertainty in promoting the need to prove in Dynamic Geometry environments , 2000 .

[13]  Gert Kadunz Macros and modules in geometry , 2002 .

[14]  Ngai-Ying Wong,et al.  The Influence of Technology on the Mathematics Curriculum , 2003 .

[15]  Mariam Haspekian,et al.  An “Instrumental Approach” to Study the Integration of a Computer Tool Into Mathematics Teaching: the Case of Spreadsheets , 2005, Int. J. Comput. Math. Learn..

[16]  Colette Laborde,et al.  Integration of Technology in the Design of Geometry Tasks with Cabri-Geometry , 2002, Int. J. Comput. Math. Learn..

[17]  André Tricot,et al.  Utilité, utilisabilité, acceptabilité : interpréter les relations entre trois dimensions de l'évaluation des EIAH , 2003 .

[18]  Keith Jones Research on the use of dynamic geometry software: implications for the classroom , 2002 .

[19]  M. Sinclair Some implications of the results of a case study for the design of pre-constructed, dynamic geometry sketches and accompanying materials , 2003 .

[20]  Celia Hoyles,et al.  What can digital technologies take from and bring to research in mathematics education , 2003 .

[21]  Y. Chevallard,et al.  La sensibilité de l'activité mathématique aux ostensifs: Objet d'étude et problématique , 1999 .

[22]  Luc Trouche,et al.  The Complex Process of Converting Tools into Mathematical Instruments: The Case of Calculators , 1998, Int. J. Comput. Math. Learn..

[23]  John Monaghan,et al.  Teachers’ Activities in Technology-Based Mathematics Lessons , 2004, Int. J. Comput. Math. Learn..

[24]  Yusuf Koc,et al.  Mathematics Teacher Education and Technology , 2003 .

[25]  Michèle Artigue,et al.  Learning Mathematics in a CAS Environment: The Genesis of a Reflection about Instrumentation and the Dialectics between Technical and Conceptual Work , 2002, Int. J. Comput. Math. Learn..

[26]  F. Arzarello,et al.  A cognitive analysis of dragging practises in Cabri environments , 2002 .

[27]  Janet Ainley,et al.  Designing Spreadsheet-Based Tasks for Purposeful Algebra , 2005, Int. J. Comput. Math. Learn..

[28]  Teresa Assude,et al.  Time Management in the Work Economy of A Class, A Case Study: Integration of Cabri in Primary School Mathematics Teaching , 2005 .

[29]  Barbara J. Dougherty,et al.  Mathematics Education Across Cultures: Proceedings of the 42nd Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education , 2020 .

[30]  Ferdinando Arzarello Inside and Outside: Spaces, Times and Language in Proof Production. , 2000 .

[31]  Dominique Guin,et al.  Calculatrices symboliques. Transformer un outil en un instrument du travail mathématique : un problème didactique , 2002 .

[32]  Michal Yerushalmy,et al.  Understanding dynamic behavior: Parent–Child relations in dynamic geometry environments , 2004 .

[33]  Jean-Baptiste Lagrange,et al.  Complex calculators in the classroom: theoretical and practical reflections on teaching pre-calculus , 1999, Int. J. Comput. Math. Learn..

[34]  Jiří Mikulčák,et al.  Zentralblatt für Didaktik der Mathematik , 1971 .

[35]  Ana Paula Jahn “Locus” and “Trace” in Cabrigéomètre: relationships between geometric and functional aspects in a study of transformations , 2002 .

[36]  Uri Leron,et al.  Computers and applied constructivism , 1997, Secondary School Mathematics in the World of Communication Technology.

[37]  Allen Leung,et al.  Theorem Justification and Acquisition in Dynamic Geometry: A Case of Proof by Contradiction , 2002, Int. J. Comput. Math. Learn..

[38]  Raymond Duval,et al.  Basic Issues for Research in Mathematics Education. , 2000 .

[39]  Celia Hoyles,et al.  Windows on Mathematical Meanings , 1996 .

[40]  Ricardo Nemirovsky,et al.  Learning to See: Making Sense of the Mathematics of Change in Middle School , 2004, Int. J. Comput. Math. Learn..

[41]  Pierre Vérillon,et al.  Cognition and artifacts: A contribution to the study of though in relation to instrumented activity , 1995 .