De novo assembly and phasing of a Korean human genome

[1]  S. Koren,et al.  Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation , 2016, bioRxiv.

[2]  Ulf Leser,et al.  Fast Sampling-Based Whole-Genome Haplotype Block Recognition , 2016, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[3]  Hanlee P. Ji,et al.  Haplotyping germline and cancer genomes using high-throughput linked-read sequencing , 2015, Nature Biotechnology.

[4]  Evan E. Eichler,et al.  Genetic variation and the de novo assembly of human genomes , 2015, Nature Reviews Genetics.

[5]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[6]  Gabor T. Marth,et al.  An integrated map of structural variation in 2,504 human genomes , 2015, Nature.

[7]  Stephane E. Castel,et al.  Tools and best practices for data processing in allelic expression analysis , 2015, Genome Biology.

[8]  Russell E. Durrett,et al.  Assembly and diploid architecture of an individual human genome via single-molecule technologies , 2015, Nature Methods.

[9]  Jian Wang,et al.  De novo assembly of a haplotype-resolved human genome , 2015, Nature Biotechnology.

[10]  Mark J. P. Chaisson,et al.  Resolving the complexity of the human genome using single-molecule sequencing , 2014, Nature.

[11]  Christina A. Cuomo,et al.  Pilon: An Integrated Tool for Comprehensive Microbial Variant Detection and Genome Assembly Improvement , 2014, PloS one.

[12]  Joshua M. Akey,et al.  Resurrecting Surviving Neandertal Lineages from Modern Human Genomes , 2014, Science.

[13]  Deanna M. Church,et al.  ClinVar: public archive of relationships among sequence variation and human phenotype , 2013, Nucleic Acids Res..

[14]  Aaron A. Klammer,et al.  Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data , 2013, Nature Methods.

[15]  Thomas R. Gingeras,et al.  STAR: ultrafast universal RNA-seq aligner , 2013, Bioinform..

[16]  Yoo Jin Jung,et al.  The transcriptional landscape and mutational profile of lung adenocarcinoma , 2012, Genome research.

[17]  Glenn Tesler,et al.  Mapping single molecule sequencing reads using basic local alignment with successive refinement (BLASR): application and theory , 2012, BMC Bioinformatics.

[18]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[19]  P. Kwok,et al.  Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly , 2012, Nature Biotechnology.

[20]  Katja Nowick,et al.  A comprehensively molecular haplotype-resolved genome of a European individual. , 2011, Genome research.

[21]  Andrew C. Adey,et al.  Haplotype-resolved genome sequencing of a Gujarati Indian individual , 2011, Nature Biotechnology.

[22]  S. Turner,et al.  Real-time DNA sequencing from single polymerase molecules. , 2010, Methods in enzymology.

[23]  Thomas D. Wu,et al.  A highly annotated whole-genome sequence of a Korean individual , 2009, Nature.

[24]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[25]  Brad T. Sherman,et al.  Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources , 2008, Nature Protocols.

[26]  Timothy B. Stockwell,et al.  The Diploid Genome Sequence of an Individual Human , 2007, PLoS biology.

[27]  Robert S. Harris,et al.  Improved pairwise alignment of genomic dna , 2007 .

[28]  R. Flomen,et al.  Detailed analysis of 15q11-q14 sequence corrects errors and gaps in the public access sequence to fully reveal large segmental duplications at breakpoints for Prader-Willi, Angelman, and inv dup(15) syndromes , 2007, Genome Biology.

[29]  D. Haussler,et al.  Evolution's cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[30]  T. Miyata,et al.  Mutations and common polymorphisms in ADAMTS13 gene responsible for von Willebrand factor-cleaving protease activity , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  J. Weissenbach,et al.  Non-founder mutations in the MEFV gene establish this gene as the cause of familial Mediterranean fever (FMF). , 1998, Human molecular genetics.

[32]  P. Green,et al.  Consed: a graphical tool for sequence finishing. , 1998, Genome research.